Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 10(6): 6039-6045, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29377673

ABSTRACT

We report on electronic transport measurements in rotational square probe configuration in combination with scanning tunneling potentiometry of epitaxial graphene monolayers which were fabricated by polymer-assisted sublimation growth on SiC substrates. The absence of bilayer graphene on the ultralow step edges of below 0.75 nm scrutinized by atomic force microscopy and scanning tunneling microscopy result in a not yet observed resistance isotropy of graphene on 4H- and 6H-SiC(0001) substrates as low as 2%. We combine microscopic electronic properties with nanoscale transport experiments and thereby disentangle the underlying microscopic scattering mechanism to explain the remaining resistance anisotropy. Eventually, this can be entirely attributed to the resistance and the number of substrate steps which induce local scattering. Thereby, our data represent the ultimate limit for resistance isotropy of epitaxial graphene on SiC for the given miscut of the substrate.

2.
J Phys Condens Matter ; 29(49): 494002, 2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29047449

ABSTRACT

In addition to the chemical and physical properties of nanostructures their successful utilization for applications is strongly triggered by economic aspects. Electrospinning of nanowires from solution followed by subsequent annealing steps is a comparably cheap technique to fabricate conductive carbon nanofibers (CNF) made from polyacrylonitrile (PAN) molecules in large quantities. In this work, we investigated the microscopic properties of the CNFs with diameters of 100-300 nm by means of Raman and x-ray photoelectron spectroscopy and correlated these results with transport measurements done with a 4-tip STM. In particular, we investigated the effect of fiber alignment and knot densities, which can be controlled by applying constant creep due to stress during the stabilization process. The comparison of the conductivity obtained from single CNFs revealed further that the fiber crossings within the ensemble structure act as scattering centers and proofs that the transport is along the surfaces of the CNFs.

3.
Sci Rep ; 6: 31639, 2016 08 17.
Article in English | MEDLINE | ID: mdl-27531322

ABSTRACT

The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these problems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C2H4) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy as well as density functional theory (DFT) calculations, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by 30° with respect to each other. The growth mode is attributed to the mechanism when small graphene "molecules" nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process.

4.
J Phys Condens Matter ; 23(11): 112204, 2011 Mar 23.
Article in English | MEDLINE | ID: mdl-21358038

ABSTRACT

Using monolayer graphene as a model system for a purely two-dimensional (2D) electron gas, we show by energy electron loss spectroscopy, highly resolved both in energy and momentum, that there is a significant probability for the excitation of not only one but two dispersing losses. The appearance of both losses is independent of the substrate (we tested graphene on the Si face of 6H-SiC(0001), and on Ir(111) without and with an intercalated Na layer), and the ratio of the slope in the dispersion curves varies between 1.4 (SiC) and 2. While the lower dispersion curve can be attributed to the excitation of the sheet plasmon, in agreement with theoretical model calculations, the upper dispersion branch has not been identified before for plasmonic excitations in a 2D electron gas, and we assign it tentatively to the excitation of a multipole sheet plasmon.

5.
J Phys Condens Matter ; 23(1): 012001, 2011 Jan 12.
Article in English | MEDLINE | ID: mdl-21406814

ABSTRACT

The quasiparticle dynamics of the sheet plasmons in epitaxially grown graphene layers on SiC(0001) has been studied systematically as a function of temperature, intrinsic defects, influence of multilayers and carrier density using electron energy loss spectroscopy with high energy and momentum resolution. The opening of an inter-band decay channel appears as an anomalous kink in the plasmon dispersion which we describe as a resonance effect in the formation of electron-hole pairs. Due to the inevitable strong coupling of plasmons with single particle excitations in reduced dimensions, such signatures are generally expected.

SELECTION OF CITATIONS
SEARCH DETAIL
...