Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673785

ABSTRACT

Circulating cell-free DNA (ccfDNA) of mitochondrial origin (ccf-mtDNA) consists of a minor fraction of total ccfDNA in blood or in other biological fluids. Aberrant levels of ccf-mtDNA have been observed in many pathologies. Here, we introduce a simple and effective standardized Taqman probe-based dual-qPCR assay for the simultaneous detection and relative quantification of nuclear and mitochondrial fragments of ccfDNA. Three pathologies of major burden, one malignancy (Breast Cancer, BrCa), one inflammatory (Osteoarthritis, OA) and one metabolic (Type 2 Diabetes, T2D), were studied. Higher levels of ccf-mtDNA were detected both in BrCa and T2D in relation to health, but not in OA. In BrCa, hormonal receptor status was associated with ccf-mtDNA levels. Machine learning analysis of ccf-mtDNA datasets was used to build biosignatures of clinical relevance. (A) a three-feature biosignature discriminating between health and BrCa (AUC: 0.887) and a five-feature biosignature for predicting the overall survival of BrCa patients (Concordance Index: 0.756). (B) a five-feature biosignature stratifying among T2D, prediabetes and health (AUC: 0.772); a five-feature biosignature discriminating between T2D and health (AUC: 0.797); and a four-feature biosignature identifying prediabetes from health (AUC: 0.795). (C) a biosignature including total plasma ccfDNA with very high performance in discriminating OA from health (AUC: 0.934). Aberrant ccf-mtDNA levels could have diagnostic/prognostic potential in BrCa and Diabetes, while the developed multiparameter biosignatures can add value to their clinical management.


Subject(s)
Breast Neoplasms , Cell-Free Nucleic Acids , DNA, Mitochondrial , Diabetes Mellitus, Type 2 , Humans , Cell-Free Nucleic Acids/blood , DNA, Mitochondrial/blood , DNA, Mitochondrial/genetics , Female , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Breast Neoplasms/blood , Breast Neoplasms/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Mitochondria/genetics , Mitochondria/metabolism , Middle Aged , Male , Aged , Machine Learning
2.
Cancers (Basel) ; 15(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37894300

ABSTRACT

Recent studies suggest that PEBP1 (also known as RKIP) and YY1, despite having distinct molecular functions, may interact and mutually influence each other's activity. They exhibit reciprocal control over each other's expression through regulatory loops, prompting the hypothesis that their interplay could be pivotal in cancer advancement and resistance to drugs. To delve into this interplay's functional characteristics, we conducted a comprehensive analysis using bioinformatics tools across a range of cancers. Our results confirm the association between elevated YY1 mRNA levels and varying survival outcomes in diverse tumors. Furthermore, we observed differing degrees of inhibitory or activating effects of these two genes in apoptosis, cell cycle, DNA damage, and other cancer pathways, along with correlations between their mRNA expression and immune infiltration. Additionally, YY1/PEBP1 expression and methylation displayed connections with genomic alterations across different cancer types. Notably, we uncovered links between the two genes and different indicators of immunosuppression, such as immune checkpoint blockade response and T-cell dysfunction/exclusion levels, across different patient groups. Overall, our findings underscore the significant role of the interplay between YY1 and PEBP1 in cancer progression, influencing genomic changes, tumor immunity, or the tumor microenvironment. Additionally, these two gene products appear to impact the sensitivity of anticancer drugs, opening new avenues for cancer therapy.

3.
Antioxid Redox Signal ; 39(13-15): 853-889, 2023 11.
Article in English | MEDLINE | ID: mdl-37466477

ABSTRACT

Significance: Several therapeutic strategies for cancer treatments have been developed with time, and significant milestones have been achieved recently. However, with these novel therapies, not all cancer types respond and in the responding cancer types only a subset is affected. The failure to respond is principally the result that these cancers develop several mechanisms of resistance. Thus, a focus of current research investigations is to unravel the various mechanisms that regulate resistance and identify suitable targets for new therapeutics. Recent Advances: Hence, many human cancer types have been reported to overexpress the inducible nitric oxide synthase (iNOS) and it has been suggested that iNOS/nitric oxide (NO) plays a pivotal role in the regulation of resistance. We have postulated that iNOS overexpression or NO regulates the overexpression of pivotal anti-apoptotic gene products such as B-cell lymphoma 2 (Bcl-2), B-cell lymphoma extra large (Bcl-xL), myeloid cell leukemia-1 (Mcl-1), and survivin. In this report, we describe the various mechanisms, transcriptional, post-transcriptional, and post-translational, by which iNOS/NO regulates the expression of the above anti-apoptotic gene products. Critical Issues: The iNOS/NO-mediated regulation of the four gene products is not the same with both specific and overlapping pathways. Our findings are, in large part, validated by bioinformatic analyses demonstrating, in several cancers, several direct correlations between the expression of iNOS and each of the four examined anti-apoptotic gene products. Future Directions: We have proposed that targeting iNOS may be highly efficient since it will result in the underexpression of multiple anti-apoptotic proteins and shifting the balance toward the proapoptotic gene products and reversal of resistance. Antioxid. Redox Signal. 39, 853-889.


Subject(s)
Neoplasms , Nitric Oxide , Humans , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Up-Regulation , Nitric Oxide/metabolism , Apoptosis , Apoptosis Regulatory Proteins/genetics , RNA
4.
Pharmaceutics ; 15(3)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36986648

ABSTRACT

Purine analogues are important therapeutic tools due to their affinity to enzymes or receptors that are involved in critical biological processes. In this study, new 1,4,6-trisubstituted pyrazolo[3,4-b]pyridines were designed and synthesized, and their cytotoxic potential was been studied. The new derivatives were prepared through suitable arylhydrazines, and upon successive conversion first to aminopyrazoles, they were converted then to 1,6-disubstituted pyrazolo[3,4-b]pyridine-4-ones; this served as the starting point for the synthesis of the target compounds. The cytotoxic activity of the derivatives was evaluated against several human and murine cancer cell lines. Substantial structure activity relationships (SARs) could be extracted, mainly concerning the 4-alkylaminoethyl ethers, which showed potent in vitro antiproliferative activity in the low µM level (0.75-4.15 µΜ) without affecting the proliferation of normal cells. The most potent analogues underwent in vivo evaluation and were found to inhibit tumor growth in vivo in an orthotopic breast cancer mouse model. The novel compounds exhibited no systemic toxicity; they affected only the implanted tumors and did not interfere with the immune system of the animals. Our results revealed a very potent novel compound which could be an ideal lead for the discovery of promising anti-tumor agents, and could also be further explored for combination treatments with immunotherapeutic drugs.

5.
Cancers (Basel) ; 15(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36831395

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC), the second most prevalent gastrointestinal malignancy and the most common type of pancreatic cancer is linked with poor prognosis and, eventually, with high mortality rates. Early detection is seldom, while tumor heterogeneity and microarchitectural alterations benefit PDAC resistance to conventional therapeutics. Although emerging evidence suggest the core role of cancer stem cells (CSCs) in PDAC aggressiveness, unique stem signatures are poorly available, thus limiting the efforts of anti-CSC-targeted therapy. Herein, we report the findings of the first genome-wide analyses of mRNA/lncRNA transcriptome profiling and co-expression networks in PDAC cell line-derived CD133+/CD44+ cells, which were shown to bear a CSC-like phenotype in vitro and in vivo. Compared to CD133-/CD44- cells, the CD133+/CD44+ population demonstrated significant expression differences in both transcript pools. Using emerging bioinformatic tools, we performed lncRNA target coding gene prediction analysis, which revealed significant Gene Ontology (GO), pathway, and network enrichments in many dyregulated lncRNA nearby (cis or trans) mRNAs, with reported involvement in the regulation of CSC phenotype and functions. In this context, the construction of lncRNA/mRNA networks by ingenuity platforms identified the lncRNAs ATF2, CHEK1, DCAF8, and PAX8 to interact with "hub" SC-associated mRNAs. In addition, the expressions of the above lncRNAs retrieved by TCGA-normalized RNAseq gene expression data of PAAD were significantly correlated with clinicopathological features of PDAC, including tumor grade and stage, nodal metastasis, and overall survival. Overall, our findings shed light on the identification of CSC-specific lncRNA signatures with potential prognostic and therapeutic significance in PDAC.

6.
Cancers (Basel) ; 14(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36230521

ABSTRACT

The Raf Kinase Inhibitor Protein (RKIP) is a unique gene product that directly inhibits the Raf/Mek/Erk and NF-kB pathways in cancer cells and resulting in the inhibition of cell proliferation, viability, EMT, and metastasis. Additionally, RKIP is involved in the regulation of cancer cell resistance to both chemotherapy and immunotherapy. The low expression of RKIP expression in many cancer types is responsible, in part, for the pathogenesis of cancer and its multiple properties. The inhibition of EMT and metastasis by RKIP led to its classification as a tumor suppressor. However, the mechanism by which RKIP mediates its inhibitory effects on EMT and metastases was not clear. We have proposed that one mechanism involves the negative regulation by RKIP of the expression of various gene products that mediate the mesenchymal phenotype as well as the positive regulation of gene products that mediate the epithelial phenotype via signaling cross talks between RKIP and each gene product. We examined several EMT mesenchymal gene products such as Snail, vimentin, N-cadherin, laminin and EPCAM and epithelial gene products such as E-cadherin and laminin. We have found that indeed these negative and positive correlations were detected in the signaling cross-talks. In addition, we have also examined bioinformatic data sets on different human cancers and the findings corroborated, in large part, the findings observed in the signaling cross-talks with few exceptions in some cancer types. The overall findings support the underlying mechanism by which the tumor suppressor RKIP regulates the expression of gene products involved in EMT and metastasis. Hence, the development of agent that can selectively induce RKIP expression in cancers with low expressions should result in the activation of the pleiotropic anti-cancer activities of RKIP and resulting in multiple effects including inhibition of tumor cell proliferation, EMT, metastasis and sensitization of resistant tumor cells to respond to both chemotherapeutics and immunotherapeutics.

7.
Drug Resist Updat ; 65: 100866, 2022 12.
Article in English | MEDLINE | ID: mdl-36198236

ABSTRACT

The acquisition of cancer cell resistance to conventional chemotherapeutics is considered the major driver of treatment failure and disease recurrence in most solid and hematological malignancies. The molecular basis of tumor chemoresistance has been extensively investigated and newly identified gene signatures have eventually paved the way towards the development of novel therapeutic interventions in the era of precision medicine in oncology. Long non-coding RNAs (lncRNAs) are defined as a class of transcripts longer than 200 nucleotides that lack translational activities and are highly abundant across the human genome. LncRNAs show higher tissue and cell subtype specificities than most mRNAs, while their biological relevance has been associated with the regulation of coding gene expression at the epigenetic, transcriptional, and post-transcriptional levels, regulation of DNA replication timing and chromosome stability, as well as aging and disease. Given their specific expression and functional diversities in a variety of human cancers, lncRNAs have currently received extensive attention regarding their implications in the disease pathophysiology and their potential applications as diagnostic/prognostic biomarkers and/or therapeutic targets in cancer. Over the last decade, different lncRNAs were found to play pivotal regulatory roles in drug resistance of certain cancer cell types via mechanisms that include among others, alterations in drug efflux, metabolism and targeting, cell death machinery, DNA damage repair, epithelial to mesenchymal transition (EMT), autophagy and oxidative stress management, as well as modifications in epigenetic regulators, oncogenes, and miRNAs. The present review discusses the current state of knowledge on the emerging research into lncRNAs as drug resistance regulators and predictors in various tumors, emphasizing lncRNA patterns associated with cancer stemness, certain drug classes and common underlying mechanisms of action. The review further reveals cutting edge strategies for lncRNA modulation and the current progress on lncRNA-targeting molecules designed to overcome cancer resistance. Our input is a reference for future research investigations on cancer chemosensitivity and provides new insights into the clinical development of lncRNA-targeted pharmacological interventions.


Subject(s)
MicroRNAs , Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , MicroRNAs/genetics , Gene Expression Regulation, Neoplastic
8.
Cancers (Basel) ; 14(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36077865

ABSTRACT

The COVID-19 pandemic accounts for more than 500 million confirmed infections and over 6 million deaths worldwide in the last 2 years. SARS-CoV-2 causes a highly complex form of inflammation that affects the human organism both acutely and chronically. In the same line, cancer as an inflammation-induced and immune-editing disease appears to cross-react with immune system at different levels including early interactions during carcinogenesis and later cross-talks within the tumor microenvironment. With all that in mind, a reasonable question one might address is whether the SARS-CoV-2 infection and the derived "long lasting inflammatory status" that is frequently observed in patients, might affect the cancer immunosurveillance mechanisms and consequently their risk of developing cancer, as well as the tumor and immune cell behaviors within the inflamed microenvironment. On this context, this review intends to outline and discuss the existing knowledge on SARS-CoV-2-mediated immunomodulation under the prism of changes that might be able to interfere with cancer cell immunoescape and the overall tumor progression and response to conventional therapeutics. Our goal is to highlight a potential interplay between the COVID-19 immunopathology and cancer immune-microenvironment that may pave the way for thorough investigation in the future.

9.
Antioxidants (Basel) ; 11(6)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35740092

ABSTRACT

The expression of inducible nitric oxide synthase (iNOS; NOS2) and derived NO in various cancers was reported to exert pro- and anti-tumorigenic effects depending on the levels of expression and the tumor types. In humans, the breast cancer level of iNOS was reported to be overexpressed, to exhibit pro-tumorigenic activities, and to be of prognostic significance. Likewise, the expression of the oncogenes HER2, BRCA1, and BRCA2 has been associated with malignancy. The interrelationship between the expression of these protooncogenes and oncogenes and the expression of iNOS is not clear. We have hypothesized that there exist cross-talk signaling pathways between the breast cancer protooncogenes, the iNOS axis, and iNOS-mediated NO mutations of these protooncogenes into oncogenes. We review the molecular regulation of the expression of the protooncogenes in breast cancer and their interrelationships with iNOS expression and activities. In addition, we discuss the roles of iNOS, HER2, BRCA1/2, and NO metabolism in the pathophysiology of cancer stem cells. Bioinformatic analyses have been performed and have found suggested molecular alterations responsible for breast cancer aggressiveness. These include the association of BRCA1/2 mutations and HER2 amplifications with the dysregulation of the NOS pathway. We propose that future studies should be undertaken to investigate the regulatory mechanisms underlying the expression of iNOS and various breast cancer oncogenes, with the aim of identifying new therapeutic targets for the treatment of breast cancers that are refractory to current treatments.

10.
Cells ; 10(12)2021 11 26.
Article in English | MEDLINE | ID: mdl-34943820

ABSTRACT

Long non-coding RNAs (lncRNAs) are critical regulatory elements in cellular functions in states of both normalcy and disease, including cancer. LncRNAs can influence not only tumorigenesis but also cancer features such as metastasis, angiogenesis and resistance to chemo-and immune-mediated apoptotic signals. Several lncRNAs have been demonstrated to control directly or indirectly the number, type and activities of distinct immune cell populations of adaptive and innate immunities within and without the tumor microenvironment. The disruption of lncRNA expression in both cancer and immune cells may reflect alterations in tumor responses to cancer immunosurveillance and immunotherapy, thus providing new insights into lncRNA biomarker-based prognostic and therapeutic cancer assessment. Here we present an overview on lncRNAs' functions and underlying molecular mechanisms related to cancer immunity and conventional immunotherapy, with the expectation that any elucidations may lead to a better understanding and management of cancer immune escape and response to current and future immunotherapeutics.


Subject(s)
Drug Resistance, Neoplasm/genetics , Immunotherapy , Monitoring, Immunologic , Neoplasms/genetics , Neoplasms/therapy , RNA, Long Noncoding/metabolism , Animals , Humans , Immune Evasion , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , RNA, Long Noncoding/genetics
11.
Cancers (Basel) ; 13(24)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34944867

ABSTRACT

Several gene products play pivotal roles in the induction of inflammation and the progression of cancer. The Raf kinase inhibitory protein (RKIP) is a cytosolic protein that exerts pleiotropic activities in such conditions, and thus regulates oncogenesis and immune-mediated diseases through its deregulation. Herein, we review the general properties of RKIP, including its: (i) molecular structure; (ii) involvement in various cell signaling pathways (i.e., inhibition of the Raf/MEK/ERK pathway; the NF-kB pathway; GRK-2 or the STAT-3 pathway; as well as regulation of the GSK3Beta signaling; and the spindle checkpoints); (iii) regulation of RKIP expression; (iv) expression's effects on oncogenesis; (v) role in the regulation of the immune system to diseases (i.e., RKIP regulation of T cell functions; the secretion of cytokines and immune mediators, apoptosis, immune check point inhibitors and RKIP involvement in inflammatory diseases); and (vi) bioinformatic analysis between normal and malignant tissues, as well as across various immune-related cells. Overall, the regulation of RKIP in different cancers and inflammatory diseases suggest that it can be used as a potential therapeutic target in the treatment of these diseases.

12.
J Clin Med ; 10(12)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207031

ABSTRACT

The corticotropin-releasing factor (CRF) system has been strongly associated with gastrointestinal pathophysiology, including colorectal cancer (CRC). We previously showed that altered expression of CRF receptors (CRFRs) in the colon critically affects CRC progression and aggressiveness through regulation of colonic inflammation. Here, we aimed to assess the potential of CRFR methylation levels as putative biomarkers in CRC. In silico methylation analysis of CRF receptor 1 (CRFR1) and CRF receptor 2 (CRFR2) was performed using methylome data derived by CRC and Crohn's disease (CD) tissues and CRC-derived circulating cell-free DNAs (ccfDNAs). In total, 32 and 33 differentially methylated sites of CpGs (DMCs) emerged in CRFR1 and CRFR2, respectively, between healthy and diseased tissues. The methylation patterns were verified in patient-derived ccfDNA samples by qMSP and associated with clinicopathological characteristics. An automated machine learning (AutoML) technology was applied to ccfDNA samples for classification analysis. In silico analysis revealed increased methylation of both CRFRs in CRC tissue and ccfDNA-derived datasets. CRFR1 hypermethylation was also noticed in gene body DMCs of CD patients. CRFR1 hypermethylation was further validated in CRC adjuvant-derived ccfDNA samples, whereas CRFR1 hypomethylation, observed in metastasis-derived ccfDNAs, was correlated to disease aggressiveness and adverse prognostic characteristics. AutoML analysis based on CRFRs methylation status revealed a three-feature high-performing biosignature for CRC diagnosis with an estimated AUC of 0.929. Monitoring of CRFRs methylation-based signature in CRC tissues and ccfDNAs may be of high diagnostic and prognostic significance in CRC.

13.
Int J Mol Sci ; 21(18)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32932969

ABSTRACT

The identification of cancer stem cells (CSCs) as initiators of carcinogenesis has revolutionized the era of cancer research and our perception for the disease treatment options. Additional CSC features, including self-renewal and migratory and invasive capabilities, have further justified these cells as putative diagnostic, prognostic, and therapeutic targets. Given the CSC plasticity, the identification of CSC-related biomarkers has been a serious burden in CSC characterization and therapeutic targeting. Over the past decades, a compelling amount of evidence has demonstrated critical regulatory functions of non-coding RNAs (ncRNAs) on the exclusive features of CSCs. We now know that ncRNAs may interfere with signaling pathways, vital for CSC phenotype maintenance, such as Notch, Wnt, and Hedgehog. Here, we discuss the multifaceted contribution of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as representative ncRNA classes, in sustaining the CSC-like traits, as well as the underlying molecular mechanisms of their action in various CSC types. We further discuss the use of CSC-related ncRNAs as putative biomarkers of high diagnostic, prognostic, and therapeutic value.


Subject(s)
Neoplasms/genetics , Neoplastic Stem Cells/metabolism , RNA, Untranslated/genetics , Animals , Biomarkers, Tumor/genetics , Humans , MicroRNAs/genetics , Neoplasms/pathology , Neoplastic Stem Cells/pathology , Prognosis , Signal Transduction/genetics
14.
Peptides ; 129: 170316, 2020 07.
Article in English | MEDLINE | ID: mdl-32333998

ABSTRACT

Corticotropin Releasing Factor (CRF) neuropeptides coordinate the stress response via two distinct membrane receptors (CRF-Rs). We have previously shown expression of both CRF-Rs in human breast cancer tissues. In the present study, we examined in vitro using the MCF-7 cell line model, the regulation of CRF-Rs expression and their signaling in hormone-dependent breast cancer growth. Our findings show that similarly to breast cancer biopsies, the predominant receptor type expressed in the cell line is CRF-R2α. The transcription of CRF-R1 and CRF-R2 is up and down-regulated respectively by exposure to estradiol (E2); however this effect seems not to be exerted at the level of promoter gene methylation, although in human breast cancer specimens, CRF-R1 methylation was found to be positively associated with the presence of steroid hormone receptors. Finally, we showed that specific activation of CRF-R2 increased the migration of MCF-7 cells and potentiated an estrogen-inducing effect. Our data support an involvement of CRF-R signaling in breast cancer pathophysiology via a regulatory steroid-hormone interplay.


Subject(s)
Breast Neoplasms/metabolism , Receptors, Corticotropin-Releasing Hormone/metabolism , Adult , Aged , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Movement/physiology , Cell Proliferation/genetics , Cell Proliferation/physiology , Fluorescent Antibody Technique , Humans , MCF-7 Cells , Middle Aged , Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction
15.
J Clin Med ; 8(10)2019 Oct 12.
Article in English | MEDLINE | ID: mdl-31614860

ABSTRACT

Chronic stress is thought to be involved in the occurrence and progression of multiple diseases, via mechanisms that still remain largely unknown. Interestingly, key regulators of the stress response, such as members of the corticotropin-releasing-hormone (CRH) family of neuropeptides and receptors, are now known to be implicated in the regulation of chronic inflammation, one of the predisposing factors for oncogenesis and disease progression. However, an interrelationship between stress, inflammation, and malignancy, at least at the molecular level, still remains unclear. Here, we attempt to summarize the current knowledge that supports the inseparable link between chronic stress, inflammation, and colorectal cancer (CRC), by modulation of a cascade of molecular signaling pathways, which are under the regulation of CRH-family members expressed in the brain and periphery. The understanding of the molecular basis of the link among these processes may provide a step forward towards personalized medicine in terms of CRC diagnosis, prognosis and therapeutic targeting.

16.
Cancers (Basel) ; 11(10)2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31575023

ABSTRACT

Different immunotherapeutic approaches have proved to be of significant clinical value to many patients with different types of advanced cancer. However, we need more precise immunotherapies and predictive biomarkers to increase the successful response rates. The advent of next generation sequencing technologies and their applications in immuno-oncology has helped us tremendously towards this aim. We are now moving towards the realization of personalized medicine, thus, significantly increasing our expectations for a more successful management of the disease. Here, we discuss the current immunotherapeutic approaches against cancer, including immune checkpoint blockade with an emphasis on anti-PD-L1 and anti-CTLA-4 monoclonal antibodies. We also analyze a growing list of other co-inhibitory and co-stimulatory markers and emphasize the mechanism of action of the principal pathway for each of these, as well as on drugs that either have been FDA-approved or are under clinical investigation. We further discuss recent advances in other immunotherapies, including cytokine therapy, adoptive cell transfer therapy and therapeutic vaccines. We finally discuss the modulation of gut microbiota composition and response to immunotherapy, as well as how tumor-intrinsic factors and immunological processes influence the mutational and epigenetic landscape of progressing tumors and response to immunotherapy but also how immunotherapeutic intervention influences the landscape of cancer neoepitopes and tumor immunoediting.

17.
Drug Discov Today ; 24(1): 279-284, 2019 01.
Article in English | MEDLINE | ID: mdl-30213567

ABSTRACT

Corticotropin-releasing factor (CRF) and the three homolog neuropeptides, urocortin (UCN) 1, 2 and 3, are the major neuroendocrine factors implicated in the response of the body to stress. Recent evidence suggests that UCNs have a significant role in the pathogenesis and management of cardiovascular disease, such as congestive heart failure, ischemic heart disease, and hypertension. These data led to the initiation of clinical trials testing a possible role of UCNs in the diagnosis and therapy of cardiovascular disease, with encouraging results. Here, we summarize the available literature concerning the role of UCNs in the cardiovascular system, focusing on the emerging data creating a potential for clinical applications.


Subject(s)
Cardiovascular Diseases/metabolism , Cardiovascular System/metabolism , Corticotropin-Releasing Hormone/metabolism , Urocortins/metabolism , Animals , Cardiovascular Diseases/drug therapy , Humans
18.
Cancers (Basel) ; 10(9)2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30149591

ABSTRACT

RAF-kinase inhibitor protein (RKIP) is a well-established tumor suppressor that is frequently downregulated in a plethora of solid and hematological malignancies. RKIP exerts antimetastatic and pro-apoptotic properties in cancer cells, via modulation of signaling pathways and gene products involved in tumor survival and spread. Here we review the contribution of RKIP in the regulation of early metastatic steps such as epithelial⁻mesenchymal transition (EMT), migration, and invasion, as well as in tumor sensitivity to conventional therapeutics and immuno-mediated cytotoxicity. We further provide updated justification for targeting RKIP as a strategy to overcome tumor chemo/immuno-resistance and suppress metastasis, through the use of agents able to modulate RKIP expression in cancer cells.

19.
Int J Cancer ; 142(2): 334-346, 2018 01 15.
Article in English | MEDLINE | ID: mdl-28929494

ABSTRACT

Colorectal cancer (CRC) responds poorly to immuno-mediated cytotoxicity. Underexpression of corticotropin-releasing-hormone-receptor-2 (CRHR2) in CRC, promotes tumor survival, growth and Epithelial to Mesenchymal Transition (EMT), in vitro and in vivo. We explored the role of CRHR2 downregulation in CRC cell resistance to Fas/FasL-mediated apoptosis and the underlying molecular mechanism. CRC cell sensitivity to CH11-induced apoptosis was compared between Urocortin-2 (Ucn2)-stimulated parental and CRHR2-overexpressing CRC cell lines and targets of CRHR2/Ucn2 signaling were identified through in vitro and ex vivo analyses. Induced CRHR2/Ucn2 signaling in SW620 and DLD1 cells increased specifically their sensitivity to CH11-mediated apoptosis, via Fas mRNA and protein upregulation. CRC compared to control tissues had reduced Fas expression that was associated with lost CRHR2 mRNA, poor tumor differentiation and high risk for distant metastasis. YY1 silencing increased Fas promoter activity in SW620 and re-sensitized them to CH11-apoptosis, thus suggesting YY1 as a putative transcriptional repressor of Fas in CRC. An inverse correlation between Fas and YY1 expression was confirmed in CRC tissue arrays, while elevated YY1 mRNA was clinically relevant with advanced CRC grade and higher risk for distant metastasis. CRHR2/Ucn2 signaling downregulated specifically YY1 expression through miR-7 elevation, while miR-7 modulation in miR-7high SW620-CRHR2+ and miR-7low HCT116 cells, had opposite effects on YY1 and Fas expressions and cell sensitivity to CH11-killing. CRHR2/Ucn2 signaling is a negative regulator of CRC cell resistance to Fas/FasL-apoptosis via targeting the miR-7/YY1/Fas circuitry. CRHR2 restoration might prove effective in managing CRC response to immune-mediated apoptotic stimuli.


Subject(s)
Apoptosis , Colorectal Neoplasms/pathology , Corticotropin-Releasing Hormone/metabolism , MicroRNAs/genetics , Receptors, Corticotropin-Releasing Hormone/metabolism , Urocortins/metabolism , YY1 Transcription Factor/metabolism , fas Receptor/metabolism , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Corticotropin-Releasing Hormone/genetics , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Receptors, Corticotropin-Releasing Hormone/genetics , Signal Transduction , Tumor Cells, Cultured , Urocortins/genetics , YY1 Transcription Factor/genetics , fas Receptor/genetics
20.
Drug Resist Updat ; 30: 28-38, 2017 01.
Article in English | MEDLINE | ID: mdl-28363333

ABSTRACT

Several gene products have been postulated to mediate inherent and/or acquired anticancer drug resistance and tumor metastasis. Among these, the metastasis suppressor and chemo-immuno-sensitizing gene product, Raf Kinase Inhibitor Protein (RKIP), is poorly expressed in many cancers. In contrast, the metastasis inducer and chemo-immuno-resistant factor Yin Yang 1 (YY1) is overexpressed in many cancers. This inverse relationship between RKIP and YY1 expression suggests that these two gene products may be regulated via cross-talks of molecular signaling pathways, culminating in the expression of different phenotypes based on their targets. Analyses of the molecular regulation of the expression patterns of RKIP and YY1 as well as epigenetic, post-transcriptional, and post-translational regulation revealed the existence of several effector mechanisms and crosstalk pathways, of which five pathways of relevance have been identified and analyzed. The five examined cross-talk pathways include the following loops: RKIP/NF-κB/Snail/YY1, p38/MAPK/RKIP/GSK3ß/Snail/YY1, RKIP/Smurf2/YY1/Snail, RKIP/MAPK/Myc/Let-7/HMGA2/Snail/YY1, as well as RKIP/GPCR/STAT3/miR-34/YY1. Each loop is comprised of multiple interactions and cascades that provide evidence for YY1's negative regulation of RKIP expression and vice versa. These loops elucidate potential prognostic motifs and targets for therapeutic intervention. Chiefly, these findings suggest that targeted inhibition of YY1 by specific small molecule inhibitors and/or the specific induction of RKIP expression and activity are potential therapeutic strategies to block tumor growth and metastasis in many cancers, as well as to overcome anticancer drug resistance. These strategies present potential alternatives for their synergistic uses in combination with low doses of conventional chemo-immunotherapeutics and hence, increasing survival, reducing toxicity, and improving quality of life.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/physiology , Neoplasms/drug therapy , Phosphatidylethanolamine Binding Protein/biosynthesis , YY1 Transcription Factor/biosynthesis , Apoptosis , Humans , Signal Transduction/physiology , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...