Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Proteomics ; 20(1): 26, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37393264

ABSTRACT

We have developed a rapid and highly specific assay for detecting and monitoring SARS-CoV-2 infections by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). As MALDI-TOF mass spectrometers are available in a clinical setting, our assay has the potential to serve as alternative to the commonly used reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Sample preparation prior to MALDI-TOF-MS involves the tryptic digestion of SARS-CoV-2 proteins, followed by an enrichment of virus-specific peptides from SARS-CoV-2 nucleoprotein via magnetic antibody beads. Our MALDI-TOF-MS method allows the detection of SARS-CoV-2 nucleoprotein in sample collection medium as low as 8 amol/µl. MALDI-TOF mass spectra are obtained in just a few seconds, which makes our MS-based assay suitable for a high-throughput screening of SARS-CoV-2 in healthcare facilities in addition to PCR. Due to the specific detection of virus peptides, different SARS-CoV-2 variants are readily distinguished from each other. Specifically, we show that our MALDI-TOF-MS assay discriminates SARS-CoV-2 strain B.1.617.2 "delta variant" from all other variants in patients' samples, making our method highly valuable to monitor the emergence of new virus variants.

2.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36355528

ABSTRACT

On-tissue enzymatic digestion is a prerequisite for MALDI mass spectrometry imaging (MSI) and spatialomic analysis of tissue proteins and their N-glycan conjugates. Despite the more widely accepted importance of N-glycans as diagnostic and prognostic biomarkers of many diseases and their potential as pharmacodynamic markers, the crucial sample preparation step, namely on-tissue digestion with enzymes like PNGaseF, is currently mainly carried out by specialized laboratories using home-built incubation arrangements, e.g., petri dishes placed in an incubator. Standardized spatially confined enzyme digests, however, require precise control and possible regulation of humidity and temperature, as high humidity increases the risk of analyte dislocation and low humidity compromises enzyme function. Here, a digestion device that controls humidity by cyclic ventilation and heating of the slide holder and the chamber lid was designed to enable controlled micro-condensation on the slide and to stabilize and monitor the digestion process. The device presented here may help with standardization in MSI. Using sagittal mouse brain sections and xenografted human U87 glioblastoma cells in CD1 nu/nu mouse brain, a device-controlled workflow for MALDI MSI of N-glycans was developed.

3.
Int J Mol Sci ; 22(23)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34884636

ABSTRACT

Analytical methods for molecular characterization of diagnostic or therapeutic targets have recently gained high interest. This review summarizes the combination of mass spectrometry and surface plasmon resonance (SPR) biosensor analysis for identification and affinity determination of protein interactions with antibodies and DNA-aptamers. The binding constant (KD) of a protein-antibody complex is first determined by immobilizing an antibody or DNA-aptamer on an SPR chip. A proteolytic peptide mixture is then applied to the chip, and following removal of unbound material by washing, the epitope(s) peptide(s) are eluted and identified by MALDI-MS. The SPR-MS combination was applied to a wide range of affinity pairs. Distinct epitope peptides were identified for the cardiac biomarker myoglobin (MG) both from monoclonal and polyclonal antibodies, and binding constants determined for equine and human MG provided molecular assessment of cross immunoreactivities. Mass spectrometric epitope identifications were obtained for linear, as well as for assembled ("conformational") antibody epitopes, e.g., for the polypeptide chemokine Interleukin-8. Immobilization using protein G substantially improved surface fixation and antibody stabilities for epitope identification and affinity determination. Moreover, epitopes were successfully determined for polyclonal antibodies from biological material, such as from patient antisera upon enzyme replacement therapy of lysosomal diseases. The SPR-MS combination was also successfully applied to identify linear and assembled epitopes for DNA-aptamer interaction complexes of the tumor diagnostic protein C-Met. In summary, the SPR-MS combination has been established as a powerful molecular tool for identification of protein interaction epitopes.


Subject(s)
Antibodies/analysis , Aptamers, Nucleotide/analysis , Biosensing Techniques/methods , Epitopes/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Antibodies/chemistry , Antibodies/immunology , Antibody Affinity , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/immunology , Epitopes/chemistry , Epitopes/immunology , Humans , Surface Plasmon Resonance/methods
4.
J Am Soc Mass Spectrom ; 32(1): 106-113, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-32838528

ABSTRACT

Myoglobin (MG) is a biomarker for heart muscle injury, making it a potential target protein for early detection of myocardial infarction. Elevated myoglobin levels alone have low specificity for acute myocardial infarction (AMI) but in combination with cardiac troponin T have been considered highly efficient diagnostic biomarkers. Myoglobin is a monomeric heme protein with a molecular weight of 17 kDa that is found in skeletal and cardiac tissue as an intracellular storage unit of oxygen. MG consists of eight α-helices connected by loops and a heme group responsible for oxygen-binding. Monoclonal antibodies are widely used analytical tools in biomedical research and have been employed for immunoanalytical detection of MG. However, the epitope(s) recognized by MG antibodies have been hitherto unknown. Precise molecular identification of the epitope(s) recognized by antibodies is of key importance for the development of MG as a diagnostic biomarker. The epitope of a monoclonal MG antibody was identified by proteolytic epitope extraction mass spectrometry in combination with surface plasmon resonance (SPR) biosensor analysis. The MG antibody was immobilized both on an affinity microcolumn and a gold SPR chip. The SPR kinetic analysis provided an affinity-binding constant KD of 270 nM for MG. Binding of a tryptic peptide mixture followed by elution of the epitope from the SPR-MS affinity interface by mild acidification provided a single-epitope peptide located at the C-terminus [146-153] [YKELGFQG] of MG. The specificity and affinity of the epitope were ascertained by synthesis and affinity-mass spectrometric characterization of the epitope peptide.


Subject(s)
Epitopes/immunology , Myoglobin/immunology , Spectrometry, Mass, Electrospray Ionization/methods , Surface Plasmon Resonance/methods , Animals , Antibodies, Immobilized/immunology , Antibodies, Monoclonal/immunology , Biomarkers , Epitopes/analysis , Myocardial Infarction/blood , Myocardial Infarction/diagnosis , Myoglobin/chemistry , Peptide Mapping , Surface Plasmon Resonance/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...