Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Assoc Lab Anim Sci ; 62(5): 464-469, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37673664

ABSTRACT

Euthanasia is the humane termination of an animal's life and an important consideration for scientists, veterinarians, regulators, and others contemplating investigations involving animals. Techniques for euthanasia must induce the most rapid, painless, and distress-free death possible. This study investigated the effectiveness of direct current induction of ventricular fibrillation for the euthanasia of sheep after a primary study in which artifacts or chemical contamination from injectable euthanasia agents were undesirable. Female crossbred adult sheep (Ovis aries; n = 12) under deep isoflurane general anesthesia were instrumented with electrophysiology catheters to induce ventricular fibrillation for euthanasia. Data regarding invasive arterial blood pressure, expired airway gases, limb lead electrocardiograms, and pulse oximetry were collected and assessed just prior to, immediately after, and at 5, 10, 15, and 20min after energy delivery. In all animals, a single 10-s application of 9V of direct current to the right ventricular endocardium via the electrophysiology catheter induced persistent ventricular fibrillation. Arterial blood pressure (mean ± 1 SD) immediately after fibrillation induction was 22.9±4.5mmHg, with negligible difference between systolic and diastolic pressures. The lack of differential pressure continued through the end of the monitoring period. Arterial blood pressure reached an initial nadir at 1??0.5min after fibrillation induction, peaked (40.8±11.1mmHg) due to a vasoconstrictive reflex at 3min after induction, and returned to a static uniform pressure (20.4±17.8mmHg) with mildly increased variability due to reflexive diaphragmatic contractions at 10min after induction. The use of 9V direct current for the induction of ventricular fibrillation via an electrophysiology catheter is a reliable method of euthanasia in sheep.


Subject(s)
Isoflurane , Sheep Diseases , Animals , Female , Sheep , Ventricular Fibrillation/etiology , Euthanasia, Animal/methods , Blood Pressure , Arterial Pressure , Isoflurane/adverse effects
2.
Pain Rep ; 7(6): e1047, 2022.
Article in English | MEDLINE | ID: mdl-36398199

ABSTRACT

Unlike conventional dorsal spinal cord stimulation (SCS)-which uses single pulses at a fixed rate-burst SCS uses a fixed-rate, five-pulse stimuli cluster as a treatment for chronic pain; mechanistic explanations suggest burst SCS differentially modulate the medial and lateral pain pathways vs conventional SCS. Neural activation differences between burst and conventional SCS are quantifiable with the spinal-evoked compound action potential (ECAP), an electrical measure of synchronous neural activation. Methods: We implanted 7 sheep with a dorsal stimulation lead at T9/T10, a dorsal ECAP sensing lead at T6/T7, and a lead also at T9/T10 but adjacent to the anterolateral system (ALS). Both burst and conventional SCS with stimulation amplitudes up to the visual motor threshold (vMT) were delivered to 3 different dorsal spinal locations, and ECAP thresholds (ECAPTs) were calculated for all combinations. Then, changes in ALS activation were assessed with both types of SCS. Results: Evoked compound action potential thresholds and vMTs were significantly higher (P < 0.05) with conventional vs burst SCS, with no statistical difference (P > 0.05) among stimulation sites. However, the vMT-ECAPT window (a proxy for the useable therapeutic dosing range) was significantly wider (P < 0.05) with conventional vs burst SCS. No significant difference (P > 0.05) in ALS activation was noted between conventional and burst SCS. Conclusion: When dosed equivalently, no differentially unique change in ALS activation results with burst SCS vs conventional SCS; in addition, sub-ECAPT burst SCS results in no discernable excitability changes in the neural pathways feeding pain relevant supraspinal sites.

3.
Circ Arrhythm Electrophysiol ; 6(1): 16-22, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23392585

ABSTRACT

BACKGROUND: Cerebral diffusion-weighted MRI lesions have been observed after catheter ablation of atrial fibrillation. We hypothesized that conditions predisposing to microembolization could be identified using a porcine model of pulmonary vein ablation and an extracorporeal circulation loop. METHODS AND RESULTS: Ablations of the pulmonary veins were performed in 18 swine with echo monitoring. The femoral artery and vein were cannulated and an extracorporeal circulation loop with 2 ultrasonic bubble detectors and a 73-µm filter were placed in series. Microemboli and microbubbles were compared between ablation with an irrigated radiofrequency system (Biosense-Webster) and a phased radiofrequency multielectrode system (pulmonary vein ablation catheter [PVAC], Medtronic, Inc, Carlsbad, CA) in unipolar and 3 blended unipolar/bipolar modes. Animal pathology was examined. The size and number of microbubbles observed during ablation ranged from 30 to 180 µm and 0 to 3253 bubbles per ablation. Microbubble volumes with PVAC (29.1 nL) were greater than with irrigated radiofrequency (0.4 nL; P=0.045), and greatest with type II or III microbubbles on transesophageal echocardiography. Ablation with the PVAC showed fewest microbubbles in the unipolar mode (P=0.012 versus bipolar). The most occurred during bipolar energy delivery with overlap of proximal and distal electrodes (median microbubble volume, 1744 nL; interquartile range, 737-4082 nL; maximum, 19 516 nL). No cerebral MRI lesions were seen, but 2 animals had renal embolization. CONCLUSIONS: Left atrial ablation with irrigated radiofrequency and PVAC catheters in swine is associated with microbubble and microembolus production. Avoiding overlap of electrodes 1 and 10 on PVAC should reduce the microembolic burden associated with this procedure.


Subject(s)
Cardiac Catheters , Catheter Ablation/adverse effects , Catheter Ablation/instrumentation , Embolism/etiology , Pulmonary Veins/surgery , Therapeutic Irrigation/adverse effects , Therapeutic Irrigation/instrumentation , Animals , Diffusion Magnetic Resonance Imaging , Echocardiography, Transesophageal , Electrodes , Embolic Protection Devices , Embolism/diagnosis , Embolism/pathology , Embolism/prevention & control , Embolism, Air/diagnosis , Embolism, Air/etiology , Embolism, Air/pathology , Embolism, Air/prevention & control , Equipment Design , Extracorporeal Circulation , Microbubbles , Models, Animal , Pulmonary Veins/diagnostic imaging , Pulmonary Veins/pathology , Swine , Time Factors , Ultrasonography, Interventional/methods
4.
Circ Arrhythm Electrophysiol ; 6(1): 23-30, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23275248

ABSTRACT

BACKGROUND: Asymptomatic cerebral lesions have been observed on diffusion weighted MRI (DWI) scans shortly after catheter ablation of atrial fibrillation, but the pathogenesis of these lesions is incompletely understood. METHODS AND RESULTS: Twelve dogs underwent selective catheterization of the internal carotid or vertebral arteries. Either a microbubbled mixture of air (1.0-4.0 mL), blood, contrast, and saline (n=5), or heat-dried pulverized blood (particle size <600 µm) mixed with saline and contrast (n=6) was injected. One sham control experiment was performed. MRI scans were performed preinjection, and at 1, 2, and 4 days postinjection. Neurological tests were performed daily. Gross pathology and histopathology were performed on the brains after being euthanized on day 4. Three animals died <24 hours after injection. Hyperintense lesions were observed on DWI (median maximum diameter 3.1 mm) in 2 of 4 animals after air embolism and in 3 of 5 animals after particulate embolism. No DWI lesions were detected in the remaining 5 animals (including the sham control). Lesions seen on DWI and confirmed on the fluid attenuating inversion recovery sequence correlated well with anatomic lesions on histopathology. CONCLUSIONS: Cerebral embolization of air microbubbles or microparticulate debris that approximate the embolic sources from catheter ablation can create hyperintense DWI punctate lesions in a canine model. The location and size of the DWI/fluid attenuating inversion recovery lesions correlate with pathological findings.


Subject(s)
Catheter Ablation/adverse effects , Intracranial Embolism/etiology , Animals , Behavior, Animal , Cardiac Catheters , Carotid Artery, Internal , Catheter Ablation/instrumentation , Catheterization, Peripheral , Cerebral Angiography , Diffusion Magnetic Resonance Imaging , Disease Models, Animal , Dogs , Embolism, Air/etiology , Embolism, Air/pathology , Embolism, Air/physiopathology , Equipment Design , Intracranial Embolism/pathology , Intracranial Embolism/physiopathology , Motor Activity , Neurologic Examination , Time Factors , Vertebral Artery
SELECTION OF CITATIONS
SEARCH DETAIL
...