Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Mol Cell Proteomics ; 22(7): 100569, 2023 07.
Article in English | MEDLINE | ID: mdl-37196763

ABSTRACT

Biomarkers remain the highest value proposition in cancer medicine today-especially protein biomarkers. Despite decades of evolving regulatory frameworks to facilitate the review of emerging technologies, biomarkers have been mostly about promise with very little to show for improvements in human health. Cancer is an emergent property of a complex system, and deconvoluting the integrative and dynamic nature of the overall system through biomarkers is a daunting proposition. The last 2 decades have seen an explosion of multiomics profiling and a range of advanced technologies for precision medicine, including the emergence of liquid biopsy, exciting advances in single-cell analysis, artificial intelligence (machine and deep learning) for data analysis, and many other advanced technologies that promise to transform biomarker discovery. Combining multiple omics modalities to acquire a more comprehensive landscape of the disease state, we are increasingly developing biomarkers to support therapy selection and patient monitoring. Furthering precision medicine, especially in oncology, necessitates moving away from the lens of reductionist thinking toward viewing and understanding that complex diseases are, in fact, complex adaptive systems. As such, we believe it is necessary to redefine biomarkers as representations of biological system states at different hierarchical levels of biological order. This definition could include traditional molecular, histologic, radiographic, or physiological characteristics, as well as emerging classes of digital markers and complex algorithms. To succeed in the future, we must move past purely observational individual studies and instead start building a mechanistic framework to enable integrative analysis of new studies within the context of prior studies. Identifying information in complex systems and applying theoretical constructs, such as information theory, to study cancer as a disease of dysregulated communication could prove to be "game changing" for the clinical outcome of cancer patients.


Subject(s)
Biomarkers, Tumor , Neoplasms , Humans , Artificial Intelligence , Biomarkers/analysis
2.
Cancer Res ; 82(11): 2072-2075, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35416976

ABSTRACT

The molecular characterization of cancer through genomics, data from multiomics technologies, molecular-driven clinical trials, and internet-enabled devices capturing patient context and real-world data are creating an unprecedented big data revolution across the cancer research-care continuum. While big data has translated to benefit for some patients, it has also created new problems. Our intent in this brief communication is to explore some examples of progress and key challenges that remain. The problems are not intractable, but success will require rethinking and rebuilding an information and evidence-based learning system that moves beyond paralysis to shape a better future for patients with cancer.


Subject(s)
Big Data , Neoplasms , Genomics , Humans , Medical Oncology , Neoplasms/genetics , Neoplasms/therapy , Paralysis
3.
Clin Cancer Res ; 24(4): 737-743, 2018 02 15.
Article in English | MEDLINE | ID: mdl-28814435

ABSTRACT

Glioblastoma (GBM) is a deadly disease with few effective therapies. Although much has been learned about the molecular characteristics of the disease, this knowledge has not been translated into clinical improvements for patients. At the same time, many new therapies are being developed. Many of these therapies have potential biomarkers to identify responders. The result is an enormous amount of testable clinical questions that must be answered efficiently. The GBM Adaptive Global Innovative Learning Environment (GBM AGILE) is a novel, multi-arm, platform trial designed to address these challenges. It is the result of the collective work of over 130 oncologists, statisticians, pathologists, neurosurgeons, imagers, and translational and basic scientists from around the world. GBM AGILE is composed of two stages. The first stage is a Bayesian adaptively randomized screening stage to identify effective therapies based on impact on overall survival compared with a common control. This stage also finds the population in which the therapy shows the most promise based on clinical indication and biomarker status. Highly effective therapies transition in an inferentially seamless manner in the identified population to a second confirmatory stage. The second stage uses fixed randomization to confirm the findings from the first stage to support registration. Therapeutic arms with biomarkers may be added to the trial over time, while others complete testing. The design of GBM AGILE enables rapid clinical testing of new therapies and biomarkers to speed highly effective therapies to clinical practice. Clin Cancer Res; 24(4); 737-43. ©2017 AACR.


Subject(s)
Brain Neoplasms/therapy , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , Glioblastoma/therapy , Randomized Controlled Trials as Topic , Bayes Theorem , Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Humans , Research Design , Survival Analysis
4.
Lancet Oncol ; 18(11): e653-e706, 2017 11.
Article in English | MEDLINE | ID: mdl-29208398

ABSTRACT

We are in the midst of a technological revolution that is providing new insights into human biology and cancer. In this era of big data, we are amassing large amounts of information that is transforming how we approach cancer treatment and prevention. Enactment of the Cancer Moonshot within the 21st Century Cures Act in the USA arrived at a propitious moment in the advancement of knowledge, providing nearly US$2 billion of funding for cancer research and precision medicine. In 2016, the Blue Ribbon Panel (BRP) set out a roadmap of recommendations designed to exploit new advances in cancer diagnosis, prevention, and treatment. Those recommendations provided a high-level view of how to accelerate the conversion of new scientific discoveries into effective treatments and prevention for cancer. The US National Cancer Institute is already implementing some of those recommendations. As experts in the priority areas identified by the BRP, we bolster those recommendations to implement this important scientific roadmap. In this Commission, we examine the BRP recommendations in greater detail and expand the discussion to include additional priority areas, including surgical oncology, radiation oncology, imaging, health systems and health disparities, regulation and financing, population science, and oncopolicy. We prioritise areas of research in the USA that we believe would accelerate efforts to benefit patients with cancer. Finally, we hope the recommendations in this report will facilitate new international collaborations to further enhance global efforts in cancer control.


Subject(s)
Biomedical Research/trends , Health Planning/trends , Health Priorities , National Cancer Institute (U.S.)/trends , Neoplasms/therapy , Biomedical Research/methods , Forecasting , Humans , Medical Oncology/trends , Neoplasms/diagnosis , Precision Medicine/trends , United States
5.
Expert Rev Mol Diagn ; 15(2): 211-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25420639

ABSTRACT

Making precision (personalized) medicine a routine clinical reality will require a comprehensive inventory of validated biomarkers and molecular diagnostic tests to stratify disease subtypes and improve accuracy in diagnosis and treatment selection. Realization of this promise has been hindered by the poor productivity of biomarker identification and validation. This situation reflects deficiencies that are pervasive across the entire spectrum of biomarker R&D, from discovery to clinical validation and in the failure of regulatory and reimbursement policies to accommodate new classes of biomarkers. The launch of the National Biomarker Development Alliance is the culmination of a 2-year review and consultation process involving diverse stakeholders to advance standards, best practices and guidelines to enhance biomarker discovery and validation by adoption of systems-based approaches and trans-sector collaboration between academia, clinical medicine and relevant private and public sector stakeholders.


Subject(s)
Molecular Diagnostic Techniques/standards , Biomarkers/metabolism , Biomedical Research , Humans , Practice Guidelines as Topic , Precision Medicine , Reference Standards , Reproducibility of Results , Research
7.
Sci Transl Med ; 2(52): 52cm26, 2010 Oct 06.
Article in English | MEDLINE | ID: mdl-20926831

ABSTRACT

In order to enhance biomedical research and development efficiency and innovation, nontraditional research collaborations have emerged that feature the sharing of information, resources, and capabilities. Although many of these so-called precompetitive collaborations are in the field of oncology, the lessons they offer are broadly applicable to other subfields of translational medicine.


Subject(s)
Biomedical Research , Cooperative Behavior , Biomedical Research/economics , Biomedical Research/methods , Biomedical Research/organization & administration , Drug Industry , Humans , Models, Organizational , Patents as Topic , Translational Research, Biomedical/economics , Translational Research, Biomedical/methods , Translational Research, Biomedical/organization & administration
8.
Article in English | MEDLINE | ID: mdl-20552623

ABSTRACT

Nanotechnology is a 'disruptive technology', which can lead to a generation of new diagnostic and therapeutic products, resulting in dramatically improved cancer outcomes. The National Cancer Institute (NCI) of National Institutes of Health explores innovative approaches to multidisciplinary research allowing for a convergence of molecular biology, oncology, physics, chemistry, and engineering and leading to the development of clinically worthy technological approaches. These initiatives include programmatic efforts to enable nanotechnology as a driver of advances in clinical oncology and cancer research, known collectively as the NCI Alliance for Nanotechnology in Cancer (ANC). Over the last 5 years, ANC has demonstrated that multidisciplinary approach catalyzes scientific developments and advances clinical translation in cancer nanotechnology. The research conducted by ANC members has improved diagnostic assays and imaging agents, leading to the development of point-of-care diagnostics, identification and validation of numerous biomarkers for novel diagnostic assays, and the development of multifunctional agents for imaging and therapy. Numerous nanotechnology-based technologies developed by ANC researchers are entering clinical trials. NCI has re-issued ANC program for next 5 years signaling that it continues to have high expectations for cancer nanotechnology's impact on clinical practice. The goals of the next phase will be to broaden access to cancer nanotechnology research through greater clinical translation and outreach to the patient and clinical communities and to support development of entirely new models of cancer care.


Subject(s)
Diagnostic Imaging/methods , Drug Delivery Systems/methods , Nanotechnology/methods , National Cancer Institute (U.S.)/trends , Neoplasms/therapy , Humans , United States
9.
Nature ; 464(7291): 993-8, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20393554

ABSTRACT

The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.


Subject(s)
Genetics, Medical/organization & administration , Genome, Human/genetics , Genomics/organization & administration , International Cooperation , Neoplasms/genetics , DNA Methylation , DNA Mutational Analysis/trends , Databases, Genetic , Genes, Neoplasm/genetics , Genetics, Medical/trends , Genomics/trends , Humans , Intellectual Property , Mutation , Neoplasms/classification , Neoplasms/pathology , Neoplasms/therapy
10.
ACS Nano ; 4(2): 589-94, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-20175564

ABSTRACT

Nanotechnology will have great impact on how cancer is diagnosed and treated in the future. New technologies to detect and image cancerous changes and materials that enable new methods of cancer treatment will radically alter patient outcomes. The National Cancer Institute (NCI) Alliance for Nanotechnology in Cancer sponsors research in cancer prevention, diagnosis, and therapy and promotes translation of basic science discoveries into clinical practice. The Fourth Annual NCI Alliance Principal Investigator Meeting was held in Manhattan Beach, California October 20-22, 2009. Presented here are highlights from the research presentations at the meeting, in the areas of in vitro diagnostics, targeted delivery of anticancer and contrast enhancement agents, and nanotherapeutics and therapeutic monitoring.


Subject(s)
Nanomedicine/methods , National Cancer Institute (U.S.) , Neoplasms , Animals , Humans , Nanomedicine/trends , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Research , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...