Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 221(2)2022 05 31.
Article in English | MEDLINE | ID: mdl-35471663

ABSTRACT

Gametogenesis is an evolutionarily conserved developmental program whereby a diploid progenitor cell undergoes meiosis and cellular remodeling to differentiate into haploid gametes, the precursors for sexual reproduction. Even in the simple eukaryotic organism Saccharomyces cerevisiae, the meiotic transcriptome is very rich and complex, thereby necessitating new tools for functional studies. Here, we report the construction of 5 stage-specific, inducible complementary DNA libraries from meiotic cells that represent over 84% of the genes found in the budding yeast genome. We employed computational strategies to detect endogenous meiotic transcript isoforms as well as library-specific gene truncations. Furthermore, we developed a robust screening pipeline to test the effect of each complementary DNA on competitive fitness. Our multiday proof-of-principle time course revealed 877 complementary DNAs that were detrimental for competitive fitness when overexpressed. The list included mitochondrial proteins that cause dose-dependent disruption of cellular respiration as well as library-specific gene truncations that expose a dominant negative effect on competitive growth. Together, these high-quality complementary DNA libraries provide an important tool for systematically identifying meiotic genes, transcript isoforms, and protein domains that are important for a specific biological function.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , DNA, Complementary , Gene Library , Meiosis/genetics , Mitochondrial Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
2.
G3 (Bethesda) ; 9(4): 1045-1053, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30723103

ABSTRACT

We recently described an unconventional mode of gene regulation in budding yeast by which transcriptional and translational interference collaborate to down-regulate protein expression. Developmentally timed transcriptional interference inhibited production of a well translated mRNA isoform and resulted in the production of an mRNA isoform containing inhibitory upstream open reading frames (uORFs) that prevented translation of the main ORF. Transcriptional interference and uORF-based translational repression are established mechanisms outside of yeast, but whether this type of integrated regulation was conserved was unknown. Here we find that, indeed, a similar type of regulation occurs at the locus for the human oncogene MDM2 We observe evidence of transcriptional interference between the two MDM2 promoters, which produce a poorly translated distal promoter-derived uORF-containing mRNA isoform and a well-translated proximal promoter-derived transcript. Down-regulation of distal promoter activity markedly up-regulates proximal promoter-driven expression and results in local reduction of histone H3K36 trimethylation. Moreover, we observe that this transcript toggling between the two MDM2 isoforms naturally occurs during human embryonic stem cell differentiation programs.


Subject(s)
Gene Expression Regulation , Models, Genetic , Proto-Oncogene Proteins c-mdm2/genetics , CRISPR-Cas Systems , Chromatin Immunoprecipitation , Gene Knockdown Techniques , Histones/metabolism , Humans , MCF-7 Cells , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...