Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(24): 28908-28915, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34110148

ABSTRACT

High-speed air-breathing propulsion systems, such as solid fuel ramjets (SFRJ), are important for space exploration and national security. The development of SFRJ requires high-performance solid fuels with excellent mechanical and combustion properties. One of the current solid fuel candidates is composed of high-energy particles (e.g., boron (B)) and polymeric binder (e.g., hydroxyl-terminated polybutadiene (HTPB)). However, the opposite polarities of the boron surface and HTPB lead to poor B particle dispersion and distribution within HTPB. Herein, we demonstrate that the surface functionalization of B particles with nonpolar oleoyl chloride greatly improves the dispersion and distribution of B particles within HTPB. The improved particle dispersion is quantitatively visualized through X-ray computed tomography imaging, and the particle/matrix interaction is evaluated by dynamic mechanical analysis. The surface-functionalized B particles can be uniformly dispersed up to 40 wt % in HTPB, the highest mass loading reported to date. The surface-functionalized B (40 wt %)/HTPB composite exhibits a 63.3% higher Young's modulus, 87.5% higher tensile strength, 16.2% higher toughness, and 16.8% higher heat of combustion than pristine B (40 wt %)/HTPB. The surface functionalization of B particles provides an effective strategy for improving the efficacy and safety of B/HTPB solid fuels for future high-speed air-breathing vehicles.

2.
J Org Chem ; 86(3): 2100-2106, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33412007

ABSTRACT

An extensive polycyclic π-system with 23 fused rings is synthesized via a highly efficient borylation reaction, in which four B-N covalent bonds and four B←N coordinate bonds are formed in one pot. B←N coordinate bonds not only lock the backbone into a near-coplanar conformation but also decrease the LUMO energy level to around -3.82 eV, demonstrating the dual utility of this strategy for the synthesis of extensive rigid polycyclic molecules and the development of n-type conjugated materials for organic electronics and organic photovoltaics.

3.
Angew Chem Int Ed Engl ; 58(7): 2034-2039, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30565363

ABSTRACT

Polycyclic conjugated hydrocarbons containing antiaromatic four-membered cyclobutadienoids (CDB) are of great fundamental and technical interest. However, their challenging synthesis has hampered the exploration and understanding of such systems. Reported herein is a modular and efficient synthesis of novel CBD-containing acene analogues, dinaphthobenzo[1,2:4,5]dicyclobutadiene (DNBDCs), with orthogonally tunable electronic properties and molecular packing. The design also features strong antiaromaticity of the CBD units, as revealed by nucleus-independent chemical shift and anisotropy of the induced current density calculations, as well as X-ray crystallography. Tuning the size of silyl substituents resulted in the most favorable "brick-layer" packing for triisobutylsilyl-DNBDC and a charge mobility of up to 0.52 cm2 V-1 s-1 in field-effect transistors.

4.
J Am Chem Soc ; 140(51): 18173-18182, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30507169

ABSTRACT

The introduction of B ← N coordinate bond-isoelectronic to C-C single bond-into π-systems represents a promising strategy to impart exotic redox and electrochromic properties into conjugated organic molecules and macromolecules. To achieve both reductive and oxidative activities using this strategy, a cruciform ladder-type molecular constitution was designed to accommodate oxidation-active, reduction-active, and B ← N coordination units into a compact structure. Two such compounds (BN-F and BN-Ph) were synthesized via highly efficient N-directed borylation. These molecules demonstrated well-separated, two reductive and two oxidative electron-transfer processes, corresponding to five distinct yet stable oxidation states, including a rarely observed boron-containing radical cation. Spectroelectrochemical measurements revealed unique optical characteristics for each of these reduced/oxidized species, demonstrating multicolor electrochromism with excellent recyclability. Distinct color changes were observed between each redox state with clear isosbestic points on the absorption spectra. The underlying redox mechanism was elucidated by a combination of computational and experimental investigations. Single-crystal X-ray diffraction analysis on the neutral state, the oxidized radical cation, and the reduced dianion of BN-Ph revealed structural transformations into two distinct quinonoid constitutions during the oxidation and reduction processes, respectively. B ← N coordination played an important role in rendering the robust and reversible multistage redox properties, by extending the charge and spin delocalization, by modulating the π-electron density, and by a newly established hyperconjugation mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...