Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 Dec 12.
Article in English | MEDLINE | ID: mdl-38085667

ABSTRACT

Free fatty acid receptor 2 (FFAR2) is activated by short-chain fatty acids and expressed widely, including in white adipocytes and various immune and enteroendocrine cells. Using both wild-type human FFAR2 and a designer receptor exclusively activated by designer drug (DREADD) variant we explored the activation and phosphorylation profile of the receptor, both in heterologous cell lines and in tissues from transgenic knock-in mouse lines expressing either human FFAR2 or the FFAR2-DREADD. FFAR2 phospho-site-specific antisera targeting either pSer296/pSer297 or pThr306/pThr310 provided sensitive biomarkers of both constitutive and agonist-mediated phosphorylation as well as an effective means to visualise agonist-activated receptors in situ. In white adipose tissue, phosphorylation of residues Ser296/Ser297 was enhanced upon agonist activation whilst Thr306/Thr310 did not become phosphorylated. By contrast, in immune cells from Peyer's patches Thr306/Thr310 become phosphorylated in a strictly agonist-dependent fashion whilst in enteroendocrine cells of the colon both Ser296/Ser297 and Thr306/Thr310 were poorly phosphorylated. The concept of phosphorylation bar-coding has centred to date on the potential for different agonists to promote distinct receptor phosphorylation patterns. Here, we demonstrate that this occurs for the same agonist-receptor pairing in different patho-physiologically relevant target tissues. This may underpin why a single G protein-coupled receptor can generate different functional outcomes in a tissue-specific manner.


Subject(s)
Fatty Acids, Nonesterified , Receptors, G-Protein-Coupled , Animals , Humans , Mice , Cell Line , Fatty Acids, Volatile/metabolism , Mice, Transgenic , Phosphorylation , Receptors, G-Protein-Coupled/metabolism
2.
Elife ; 112022 03 01.
Article in English | MEDLINE | ID: mdl-35229717

ABSTRACT

Volatile small molecules, including the short-chain fatty acids (SCFAs), acetate and propionate, released by the gut microbiota from the catabolism of nondigestible starches, can act in a hormone-like fashion via specific G-protein-coupled receptors (GPCRs). The primary GPCR targets for these SCFAs are FFA2 and FFA3. Using transgenic mice in which FFA2 was replaced by an altered form called a Designer Receptor Exclusively Activated by Designer Drugs (FFA2-DREADD), but in which FFA3 is unaltered, and a newly identified FFA2-DREADD agonist 4-methoxy-3-methyl-benzoic acid (MOMBA), we demonstrate how specific functions of FFA2 and FFA3 define a SCFA-gut-brain axis. Activation of both FFA2/3 in the lumen of the gut stimulates spinal cord activity and activation of gut FFA3 directly regulates sensory afferent neuronal firing. Moreover, we demonstrate that FFA2 and FFA3 are both functionally expressed in dorsal root- and nodose ganglia where they signal through different G proteins and mechanisms to regulate cellular calcium levels. We conclude that FFA2 and FFA3, acting at distinct levels, provide an axis by which SCFAs originating from the gut microbiota can regulate central activity.


Subject(s)
Brain-Gut Axis , Receptors, Cell Surface , Animals , Fatty Acids, Volatile/metabolism , Mice , Propionates/metabolism , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled/metabolism
3.
Br J Pharmacol ; 179(14): 3529-3541, 2022 07.
Article in English | MEDLINE | ID: mdl-32869860

ABSTRACT

Despite the importance of members of the GPCR superfamily as targets of a broad range of effective medicines many GPCRs remain poorly characterised. GPR84 is an example. Expression of GPR84 is strongly up regulated in immune cells in a range of pro-inflammatory settings and clinical trials to treat idiopathic pulmonary fibrosis are currently ongoing using ligands with differing levels of selectivity and affinity as GPR84 antagonists. Although blockade of GPR84 may potentially prove effective also in diseases associated with inflammation of the lower gut there is emerging interest in defining if agonists of GPR84 might find utility in conditions in which regulation of metabolism or energy sensing is compromised. Here, we consider the physiological and pathological expression profile of GPR84 and, in the absence of direct structural information, recent developments and use of GPR84 pharmacological tool compounds to study its broader role and biology. LINKED ARTICLES: This article is part of a themed issue on Structure Guided Pharmacology of Membrane Proteins (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.14/issuetoc.


Subject(s)
Idiopathic Pulmonary Fibrosis , Receptors, G-Protein-Coupled , Humans , Inflammation , Ligands , Receptors, G-Protein-Coupled/metabolism
4.
Trends Pharmacol Sci ; 42(3): 191-202, 2021 03.
Article in English | MEDLINE | ID: mdl-33495026

ABSTRACT

Short-chain fatty acids are generated in large amounts by the intestinal microbiota. They activate both the closely related G protein-coupled receptors free fatty acid receptor 2 (FFA2) and free fatty acid receptor 3 (FFA3) that are considered therapeutic targets in diseases of immuno-metabolism. Limited and species-selective small-molecule pharmacology has restricted our understanding of the distinct roles of these receptors. Replacement of mouse FFA2 with a designer receptor exclusively activated by designer drug form of human FFA2 (hFFA2-DREADD) has allowed definition of specific roles of FFA2 in pharmacological and physiological studies conducted both ex vivo and in vivo, whilst overlay of murine disease models offers opportunities for therapeutic validation prior to human studies. Similar approaches can potentially be used to define roles of other poorly characterised receptors.


Subject(s)
Receptors, Cell Surface , Receptors, G-Protein-Coupled , Animals , Fatty Acids, Nonesterified , Mice
5.
J Med Chem ; 63(7): 3577-3595, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32141297

ABSTRACT

Free fatty acid receptor 3 (FFA3, previously GPR41) is activated by short-chain fatty acids, mediates health effects of the gut microbiota, and is a therapeutic target for metabolic and inflammatory diseases. The shortage of well-characterized tool compounds has however impeded progress. Herein, we report structure-activity relationship of an allosteric modulator series and characterization of physicochemical and pharmacokinetic properties of selected compounds, including previous and new tools. Two representatives, 57 (TUG-1907) and 63 (TUG-2015), showed improved solubility and preserved potency. Of these, 57, with EC50 = 145 nM and a solubility of 33 µM, showed high clearance in vivo but is a preferred tool in vitro. In contrast, 63, with EC50 = 162 nM and a solubility of 9 µM, showed lower clearance and seems better suited for in vivo studies. Using 57, we demonstrate for the first time that FFA3 activation leads to calcium mobilization in murine dorsal root ganglia.


Subject(s)
Quinolones/pharmacology , Receptors, G-Protein-Coupled/metabolism , Allosteric Regulation , Animals , Drug Stability , Ganglia, Spinal/drug effects , Humans , Mice, Knockout , Microsomes, Liver/metabolism , Molecular Docking Simulation , Molecular Structure , Quinolones/chemical synthesis , Quinolones/metabolism , Quinolones/pharmacokinetics , Receptors, G-Protein-Coupled/genetics , Structure-Activity Relationship
6.
Nat Chem Biol ; 15(5): 489-498, 2019 05.
Article in English | MEDLINE | ID: mdl-30992568

ABSTRACT

Differentiating actions of short chain fatty acids (SCFAs) at free fatty acid receptor 2 (FFA2) from other free fatty acid-responsive receptors and from non-receptor-mediated effects has been challenging. Using a novel chemogenetic and knock-in strategy, whereby an engineered variant of FFA2 (FFA2-DREADD) that is unresponsive to natural SCFAs but is instead activated by sorbic acid replaced the wild-type receptor, we determined that activation of FFA2 in differentiated adipocytes and colonic crypt enteroendocrine cells of mouse accounts fully for SCFA-regulated lipolysis and release of the incretin glucagon-like peptide-1 (GLP-1), respectively. In vivo studies confirmed the specific role of FFA2 in GLP-1 release and also demonstrated a direct role for FFA2 in accelerating gut transit. Thereby, we establish the general principle that such a chemogenetic knock-in strategy can successfully define novel G-protein-coupled receptor (GPCR) biology and provide both target validation and establish therapeutic potential of a 'hard to target' GPCR.


Subject(s)
Fatty Acids, Volatile/metabolism , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Humans , Mice , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Receptors, G-Protein-Coupled/genetics
7.
Immunol Rev ; 282(1): 58-72, 2018 03.
Article in English | MEDLINE | ID: mdl-29431206

ABSTRACT

Mast cells are a part of the innate immune system implicated in allergic reactions and the regulation of host-pathogen interactions. The distribution, morphology and biochemical composition of mast cells has been studied in detail in vitro and on tissue sections both at the light microscopic and ultrastructural level. More recently, the development of fluorescent reporter strains and intravital imaging modalities has enabled first glimpses of the real-time behavior of mast cells in situ. In this review, we describe commonly used imaging approaches to study mast cells in cell culture as well as within normal and diseased tissues. We further describe the interrogation of mast cell function via imaging by providing a detailed description of mast cell-nerve plexus interactions in the intestinal tract. Together, visualizing mast cells has expanded our view of these cells in health and disease.


Subject(s)
Basophils/pathology , Hypersensitivity/immunology , Intravital Microscopy/methods , Mast Cells/pathology , Nerve Fibers/physiology , Animals , Basophils/physiology , Cell Communication , Cell Culture Techniques , Diagnostic Imaging , Fluorescent Antibody Technique , Host-Pathogen Interactions , Humans , Hypersensitivity/pathology , Mast Cells/physiology
8.
Front Physiol ; 8: 971, 2017.
Article in English | MEDLINE | ID: mdl-29238306

ABSTRACT

Introduction: It is suggested that an altered microenvironment in the gut wall alters communication along a mast cell nerve axis. We aimed to record for the first time signaling between mast cells and neurons in intact human submucous preparations. Methods: We used the Ca2+ sensitive dye Fluo-4 AM to simultaneously image changes in intracellular calcium [Ca+2]i (%ΔF/F) in neurons and mast cells. Data are presented as median with interquartile ranges (25/75%). Results: We recorded nerve responses in 29 samples upon selective activation of 223 mast cells by IgE receptor cross linking with the antibody mAb22E7. Mast cells responded to mAb22E7 with a median [Ca+2]i increase of 20% (11/39) peaking 90 s (64/144) after the application. Only very few neurons responded and the median percentage of responding neuronal area was 0% (0/5.9). Mast cell activation remained in the presence of the fast sodium channel blocker tetrodotoxin. Specific neuronal activation by transmural electrical field stimulation (EFS) in 34 samples evoked instantaneously [Ca+2]i signals in submucous neurons. This was followed by a [Ca+2]i peak response of 8%ΔF/F (4/15) in 33% of 168 mast cells in the field of view. The mast cell response was abolished by the nerve blocker tetrododoxin, reduced by the Calcitonin Gene-Related Peptide receptor 1 antagonist BIBN-4096 and the Vasoactive Intestinal Peptide receptor antagonist PG97-269, but not by blockade of the neurokinin receptors 1-3. Conclusion: The findings revealed bidirectional signaling between mast cells and submucous neurons in human gut. In our macroscopically normal preparations a nerve to mast cell signaling was very prominent whereas a mast cell to nerve signaling was rather rare.

SELECTION OF CITATIONS
SEARCH DETAIL
...