Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 155(4): 2627-2635, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38629884

ABSTRACT

Passive acoustic monitoring (PAM) is an optimal method for detecting and monitoring cetaceans as they frequently produce sound while underwater. Cue counting, counting acoustic cues of deep-diving cetaceans instead of animals, is an alternative method for density estimation, but requires an average cue production rate to convert cue density to animal density. Limited information about click rates exists for sperm whales in the central North Pacific Ocean. In the absence of acoustic tag data, we used towed hydrophone array data to calculate the first sperm whale click rates from this region and examined their variability based on click type, location, distance of whales from the array, and group size estimated by visual observers. Our findings show click type to be the most important variable, with groups that include codas yielding the highest click rates. We also found a positive relationship between group size and click detection rates that may be useful for acoustic predictions of group size in future studies. Echolocation clicks detected using PAM methods are often the only indicator of deep-diving cetacean presence. Understanding the factors affecting their click rates provides important information for acoustic density estimation.


Subject(s)
Echolocation , Sperm Whale , Animals , Vocalization, Animal , Acoustics , Whales , Sound Spectrography
2.
Proc Natl Acad Sci U S A ; 119(37): e2201692119, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36074817

ABSTRACT

Culture, a pillar of the remarkable ecological success of humans, is increasingly recognized as a powerful force structuring nonhuman animal populations. A key gap between these two types of culture is quantitative evidence of symbolic markers-seemingly arbitrary traits that function as reliable indicators of cultural group membership to conspecifics. Using acoustic data collected from 23 Pacific Ocean locations, we provide quantitative evidence that certain sperm whale acoustic signals exhibit spatial patterns consistent with a symbolic marker function. Culture segments sperm whale populations into behaviorally distinct clans, which are defined based on dialects of stereotyped click patterns (codas). We classified 23,429 codas into types using contaminated mixture models and hierarchically clustered coda repertoires into seven clans based on similarities in coda usage; then we evaluated whether coda usage varied with geographic distance within clans or with spatial overlap between clans. Similarities in within-clan usage of both "identity codas" (coda types diagnostic of clan identity) and "nonidentity codas" (coda types used by multiple clans) decrease as space between repertoire recording locations increases. However, between-clan similarity in identity, but not nonidentity, coda usage decreases as clan spatial overlap increases. This matches expectations if sympatry is related to a measurable pressure to diversify to make cultural divisions sharper, thereby providing evidence that identity codas function as symbolic markers of clan identity. Our study provides quantitative evidence of arbitrary traits, resembling human ethnic markers, conveying cultural identity outside of humans, and highlights remarkable similarities in the distributions of human ethnolinguistic groups and sperm whale clans.


Subject(s)
Social Identification , Sperm Whale , Acoustics , Animals , Culture , Pacific Ocean , Vocalization, Animal
3.
J Acoust Soc Am ; 150(2): 1120, 2021 08.
Article in English | MEDLINE | ID: mdl-34470263

ABSTRACT

Passive acoustic monitoring using a towed line array of hydrophones is a standard method for localizing cetaceans during line-transect cetacean abundance surveys. Perpendicular distances estimated between localized whales and the trackline are essential for abundance estimation using acoustic data. Uncertainties in the acoustic data from hydrophone movement, sound propagation effects, errors in the time of arrival differences, and whale depth are not accounted for by most two-dimensional localization methods. Consequently, location and distance estimates for deep-diving cetaceans may be biased, creating uncertainty in abundance estimates. Here, a model-based localization approach is applied to towed line array acoustic data that incorporates sound propagation effects, accounts for sources of error, and localizes in three dimensions. The whale's true distance, ship trajectory, and whale movement greatly affected localization results in simulations. The localization method was applied to real acoustic data from two separate sperm whales, resulting in three-dimensional distance and depth estimates with position bounds for each whale. By incorporating sources of error, this three-dimensional model-based approach provides a method to address and integrate the inherent uncertainties in towed array acoustic data for more robust localization.


Subject(s)
Acoustics , Vocalization, Animal , Animals , Sound , Sperm Whale , Whales
SELECTION OF CITATIONS
SEARCH DETAIL
...