Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 887: 163986, 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37150465

ABSTRACT

Increased crop production is a main goal to feed the predicted human population in future. The current management practice is, however, not sustainable as it depends on high amounts of fertilizer application and is highly vulnerable to decreased soil water availability. At the same time it becomes more and more crucial to reduce or even mitigate anthropogenic greenhouse gas (GHG) emissions. A possible way to enable this, might be the increase of the soil C sequestration and thus the C sink function of arable lands. A recent and potentially more sustainable idea is the single time fertilization with amorphous silicon (ASi) which is known to increase both nutrient and water availability. Here we show for the first time on the basis of a field plot experiment how a fertilization with ASi is affecting both, crop yield and the C sequestration of the soils in an agricultural system cultivating wheat. We found a strong increase in wheat yield and biomass production after ASi fertilization by increasing soil moisture during the whole growing season. Additionally, despite a relatively short growing season, Si fertilization increased the net C uptake by soils, i.e., C sequestration with both Si fertilized treatments showing a negative net ecosystem C balance (soil C gain) during the measurement period, while the control showed a small positive net ecosystem C balance (soil C loss). To our best knowledge, this is the first time such effect has ever been observed. In summary, our study demonstrates a new management strategy for crop production increasing yield and biomass production as well as soil C uptake on a more sustainable basis, by a single time fertilization with ASi.

2.
Mycotoxin Res ; 39(1): 19-31, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36282420

ABSTRACT

Grasses growing next to agricultural fields influence the Fusarium abundance, the species composition, and the mycotoxin accumulation of wheat plants, especially the field parts directly adjacent to grasses, are highly affected. Grasses are a more attractive and suitable habitat for Fusarium fungi compared to other arable weeds and occur at mostly every semi-natural landscape element (e.g., kettle holes, hedgerows, field-to-field-borders). In our study, we analyzed the ability of a highly Fusarium infected grass stripe (F. graminearum, F. culmorum, F. sporotrichioides) to infect an adjacent wheat field with these species. Results show that the primary inoculated Fusarium species were as well the dominant species isolated from the wheat field. Regarding transects originating from the grass stripe going into the field, the results demonstrate that wheat ears next to the infected grass stripe have a higher Fusarium abundance and furthermore show higher mycotoxin accumulation in the wheat kernels. This effect was highly promoted by irrigation. Therefore, grass stripes next to arable fields must be considered as reservoirs for fungal infections and as a source for a contamination with mycotoxins.


Subject(s)
Fusarium , Mycotoxins , Poaceae/microbiology , Triticum/microbiology , Plant Diseases
3.
Sci Rep ; 11(1): 20852, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34675299

ABSTRACT

Drought and the availability of mineable phosphorus minerals used for fertilization are two of the important issues agriculture is facing in the future. High phosphorus availability in soils is necessary to maintain high agricultural yields. Drought is one of the major threats for terrestrial ecosystem performance and crop production in future. Among the measures proposed to cope with the upcoming challenges of intensifying drought stress and to decrease the need for phosphorus fertilizer application is the fertilization with silica (Si). Here we tested the importance of soil Si fertilization on wheat phosphorus concentration as well as wheat performance during drought at the field scale. Our data clearly showed a higher soil moisture for the Si fertilized plots. This higher soil moisture contributes to a better plant performance in terms of higher photosynthetic activity and later senescence as well as faster stomata responses ensuring higher productivity during drought periods. The plant phosphorus concentration was also higher in Si fertilized compared to control plots. Overall, Si fertilization or management of the soil Si pools seem to be a promising tool to maintain crop production under predicted longer and more serve droughts in the future and reduces phosphorus fertilizer requirements.

4.
Sci Data ; 8(1): 136, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34021166

ABSTRACT

Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.


Subject(s)
Biodiversity , Oligochaeta/classification , Animals , Biomass
5.
Mycotoxin Res ; 36(2): 147-158, 2020 May.
Article in English | MEDLINE | ID: mdl-31755073

ABSTRACT

Fluorescent pseudomonads colonizing wheat ears have a high antagonistic potential against phytopathogenic fungi. To check this hypothesis, the bacterial antagonist Pseudomonas simiae 9 rif+/kan+ was spray-inoculated onto the ears of winter wheat in a locally demarcated experimental field plot. Fusarium and Alternaria fungi naturally occurring on the ears and the formation of their mycotoxins in the ripe grains were investigated. Inoculated bacteria were recovered from the plants in the inoculation cell, but not in the untreated neighboring plots or in the air above the plants. Growth of fusaria and alternaria on the ears was not influenced by the bacterial antagonist. Wheat kernels were co-inoculated in vitro with the antagonist and one mycotoxin-producing strain of Fusarium and Alternaria, respectively. Mycotoxin production was almost completely suppressed in these approaches. Concentrations of zearalenone, deoxynivalenol, alternariol, and tenuazonic acid were also significantly reduced in ripe grains in the field, but to a lesser extent than in vitro. The results of this and previous studies suggest that widespread biological control of the growth of fusaria and alternaria and their mycotoxin formation by naturally occurring pseudomonads with antagonistic activity is rather unlikely.


Subject(s)
Alternaria/growth & development , Antibiosis , Fusarium/growth & development , Mycotoxins/analysis , Pseudomonas/physiology , Triticum/microbiology , Alternaria/pathogenicity , Biological Control Agents , Fusarium/pathogenicity , Lactones/analysis , Tenuazonic Acid/analysis , Trichothecenes/analysis , Triticum/chemistry , Zearalenone/analysis
6.
PLoS One ; 11(6): e0158271, 2016.
Article in English | MEDLINE | ID: mdl-27355340

ABSTRACT

BACKGROUND: Earthworms are important for maintaining soil ecosystem functioning and serve as indicators of soil fertility. However, detection of earthworms is time-consuming, which hinders the assessment of earthworm abundances with high sampling density over entire fields. Recent developments of mobile terrestrial sensor platforms for proximal soil sensing (PSS) provided new tools for collecting dense spatial information of soils using various sensing principles. Yet, the potential of PSS for assessing earthworm habitats is largely unexplored. This study investigates whether PSS data contribute to the spatial prediction of earthworm abundances in species distribution models of agricultural soils. METHODOLOGY/PRINCIPAL FINDINGS: Proximal soil sensing data, e.g., soil electrical conductivity (EC), pH, and near infrared absorbance (NIR), were collected in real-time in a field with two management strategies (reduced tillage / conventional tillage) and sandy to loam soils. PSS was related to observations from a long-term (11 years) earthworm observation study conducted at 42 plots. Earthworms were sampled from 0.5 x 0.5 x 0.2 m³ soil blocks and identified to species level. Sensor data were highly correlated with earthworm abundances observed in reduced tillage but less correlated with earthworm abundances observed in conventional tillage. This may indicate that management influences the sensor-earthworm relationship. Generalized additive models and state-space models showed that modelling based on data fusion from EC, pH, and NIR sensors produced better results than modelling without sensor data or data from just a single sensor. Regarding the individual earthworm species, particular sensor combinations were more appropriate than others due to the different habitat requirements of the earthworms. Earthworm species with soil-specific habitat preferences were spatially predicted with higher accuracy by PSS than more ubiquitous species. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that PSS contributes to the spatial modelling of earthworm abundances at field scale and that it will support species distribution modelling in the attempt to understand the soil-earthworm relationships in agroecosystems.


Subject(s)
Agriculture/methods , Ecosystem , Oligochaeta/physiology , Soil Pollutants/analysis , Soil , Animals , Carbon/analysis , Geography , Hydrogen-Ion Concentration , Spectroscopy, Near-Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...