Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 88(6): 2504-2519, 2022 12.
Article in English | MEDLINE | ID: mdl-36000548

ABSTRACT

PURPOSE: Two-dimensional (2D) echo-planar radiofrequency (RF) pulses are widely used for reduced field-of-view (FOV) imaging in applications such as diffusion-weighted imaging. However, long pulse durations render the 2D RF pulses sensitive to off-resonance effects, causing local signal losses in reduced-FOV images. This work aims to achieve off-resonance robustness for 2D RF pulses via a sheared trajectory design. THEORY AND METHODS: A sheared 2D RF pulse design is proposed to reduce pulse durations while covering identical excitation k-space extent as a standard 2D RF pulse. For a given shear angle, the number of sheared trajectory lines is minimized to obtain the shortest pulse duration, such that the excitation replicas are repositioned outside the slice stack to guarantee unlimited slice coverage. A target fat/water signal ratio of 5% is chosen to achieve robust fat suppression. RESULTS: Simulations, imaging experiments on a custom head and neck phantom, and in vivo imaging experiments in the spinal cord at 3 T demonstrate that the sheared 2D RF design provides significant improvement in image quality while preserving profile sharpnesses. In regions with high off-resonance effects, the sheared 2D RF pulse improves the signal by more than 50% when compared to the standard 2D RF pulse. CONCLUSION: The proposed sheared 2D RF design successfully reduces pulse durations, exhibiting significantly improved through-plane off-resonance robustness, while providing unlimited slice coverage and high fidelity fat suppression. This method will be especially beneficial in regions suffering from a variety of off-resonance effects, such as spinal cord and breast.


Subject(s)
Echo-Planar Imaging , Image Enhancement , Image Processing, Computer-Assisted , Adipose Tissue/diagnostic imaging , Body Water/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Echo-Planar Imaging/methods , Humans , Image Enhancement/methods , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Signal-To-Noise Ratio
2.
Magn Reson Imaging ; 85: 210-216, 2022 01.
Article in English | MEDLINE | ID: mdl-34688847

ABSTRACT

Two-dimensional spatially selective radiofrequency (2DRF) excitation pulses are widely used for reduced field-of-view (FOV) targeted high-resolution diffusion weighted imaging (DWI), especially for anatomically small regions such as the spinal cord and prostate. The reduction in FOV achieved by 2DRF pulses significantly improve the in-plane off-resonance artifacts in single-shot echo planar imaging (ss-EPI). However, long durations of 2DRF pulses create a sensitivity to through-plane off-resonance effects, especially at 3T where the off-resonance field doubles with respect to 1.5T. This work proposes a parameter-based optimization approach to design 2DRF pulses with blips along the slice-select axis, with the goal of maximizing slab sharpness while minimizing off-resonance effects on 1.5T and 3T MRI scanners, separately. Extensive Bloch simulations are performed to evaluate the off-resonance robustness of 2DRF pulses. Three different metrics are proposed to quantify the similarity between the actual and ideal 2D excitation profiles, based on the signals within and outside the targeted reduced-FOV region. In addition, simulations on a digital brain phantom are performed for visual comparison purposes. The results show that maintaining a sharp profile is the primary design requirement at 1.5T, necessitating the usage of relatively high slab sharpness with a time-bandwidth product (TBW) around 8-10. In contrast, off-resonance robustness is the primary design requirement at 3T, requiring the usage of a moderate slap sharpness with TBW around 5-7.


Subject(s)
Diffusion Magnetic Resonance Imaging , Echo-Planar Imaging , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Echo-Planar Imaging/methods , Humans , Magnetic Resonance Imaging , Male , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...