Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 110(20): 8020-4, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23630257

ABSTRACT

The 1.88-Ga Gunflint biota is one of the most famous Precambrian microfossil lagerstätten and provides a key record of the biosphere at a time of changing oceanic redox structure and chemistry. Here, we report on pyritized replicas of the iconic autotrophic Gunflintia-Huroniospora microfossil assemblage from the Schreiber Locality, Canada, that help capture a view through multiple trophic levels in a Paleoproterozoic ecosystem. Nanoscale analysis of pyritic Gunflintia (sheaths) and Huroniospora (cysts) reveals differing relic carbon and nitrogen distributions caused by contrasting spectra of decay and pyritization between taxa, reflecting in part their primary organic compositions. In situ sulfur isotope measurements from individual microfossils (δ(34)S(V-CDT) +6.7‰ to +21.5‰) show that pyritization was mediated by sulfate-reducing microbes within sediment pore waters whose sulfate ion concentrations rapidly became depleted, owing to occlusion of pore space by coeval silicification. Three-dimensional nanotomography reveals additional pyritized biomaterial, including hollow, cellular epibionts and extracellular polymeric substances, showing a preference for attachment to Gunflintia over Huroniospora and interpreted as components of a saprophytic heterotrophic, decomposing community. This work also extends the record of remarkable biological preservation in pyrite back to the Paleoproterozoic and provides criteria to assess the authenticity of even older pyritized microstructures that may represent some of the earliest evidence for life on our planet.


Subject(s)
Fossils , Geology/methods , Paleontology/methods , Carbon/chemistry , Ecosystem , Geologic Sediments/analysis , Geologic Sediments/chemistry , Heterotrophic Processes , Microscopy, Electron, Transmission , Software , Spectrum Analysis, Raman , Sulfur Isotopes/analysis
2.
Nature ; 478(7369): 369-73, 2011 Oct 19.
Article in English | MEDLINE | ID: mdl-22012395

ABSTRACT

The enrichment of redox-sensitive trace metals in ancient marine sedimentary rocks has been used to determine the timing of the oxidation of the Earth's land surface. Chromium (Cr) is among the emerging proxies for tracking the effects of atmospheric oxygenation on continental weathering; this is because its supply to the oceans is dominated by terrestrial processes that can be recorded in the Cr isotope composition of Precambrian iron formations. However, the factors controlling past and present seawater Cr isotope composition are poorly understood. Here we provide an independent and complementary record of marine Cr supply, in the form of Cr concentrations and authigenic enrichment in iron-rich sedimentary rocks. Our data suggest that Cr was largely immobile on land until around 2.48 Gyr ago, but within the 160 Myr that followed--and synchronous with independent evidence for oxygenation associated with the Great Oxidation Event (see, for example, refs 4-6)--marked excursions in Cr content and Cr/Ti ratios indicate that Cr was solubilized at a scale unrivalled in history. As Cr isotope fractionations at that time were muted, Cr must have been mobilized predominantly in reduced, Cr(III), form. We demonstrate that only the oxidation of an abundant and previously stable crustal pyrite reservoir by aerobic-respiring, chemolithoautotrophic bacteria could have generated the degree of acidity required to solubilize Cr(III) from ultramafic source rocks and residual soils. This profound shift in weathering regimes beginning at 2.48 Gyr ago constitutes the earliest known geochemical evidence for acidophilic aerobes and the resulting acid rock drainage, and accounts for independent evidence of an increased supply of dissolved sulphate and sulphide-hosted trace elements to the oceans around that time. Our model adds to amassing evidence that the Archaean-Palaeoproterozoic boundary was marked by a substantial shift in terrestrial geochemistry and biology.


Subject(s)
Bacteria, Aerobic/metabolism , Chromium/chemistry , Geologic Sediments/chemistry , Iron/metabolism , Oxidation-Reduction , Sulfides/metabolism , Chromium/analysis , Geologic Sediments/microbiology , Hydrogen-Ion Concentration , Iron/chemistry , Rivers , Seawater/chemistry , Time Factors
3.
Science ; 326(5956): 1086-9, 2009 Nov 20.
Article in English | MEDLINE | ID: mdl-19965423

ABSTRACT

Some of Earth's largest iron-nickel (Fe-Ni) sulfide ore deposits formed during the Archean and early Proterozoic. Establishing the origin of the metals and sulfur in these deposits is critical for understanding their genesis. Here, we present multiple sulfur isotope data implying that the sulfur in Archean komatiite-hosted Fe-Ni sulfide deposits was previously processed through the atmosphere and then accumulated on the ocean floor. High-temperature, mantle-derived komatiite magmas were then able to incorporate the sulfur from seafloor hydrothermal sulfide accumulations and sulfidic shales to form Neoarchean komatiite-hosted Fe-Ni sulfide deposits at a time when the oceans were sulfur-poor.

4.
Nature ; 458(7239): 750-3, 2009 Apr 09.
Article in English | MEDLINE | ID: mdl-19360085

ABSTRACT

It has been suggested that a decrease in atmospheric methane levels triggered the progressive rise of atmospheric oxygen, the so-called Great Oxidation Event, about 2.4 Gyr ago. Oxidative weathering of terrestrial sulphides, increased oceanic sulphate, and the ecological success of sulphate-reducing microorganisms over methanogens has been proposed as a possible cause for the methane collapse, but this explanation is difficult to reconcile with the rock record. Banded iron formations preserve a history of Precambrian oceanic elemental abundance and can provide insights into our understanding of early microbial life and its influence on the evolution of the Earth system. Here we report a decline in the molar nickel to iron ratio recorded in banded iron formations about 2.7 Gyr ago, which we attribute to a reduced flux of nickel to the oceans, a consequence of cooling upper-mantle temperatures and decreased eruption of nickel-rich ultramafic rocks at the time. We measured nickel partition coefficients between simulated Precambrian sea water and diverse iron hydroxides, and subsequently determined that dissolved nickel concentrations may have reached approximately 400 nM throughout much of the Archaean eon, but dropped below approximately 200 nM by 2.5 Gyr ago and to modern day values ( approximately 9 nM) by approximately 550 Myr ago. Nickel is a key metal cofactor in several enzymes of methanogens and we propose that its decline would have stifled their activity in the ancient oceans and disrupted the supply of biogenic methane. A decline in biogenic methane production therefore could have occurred before increasing environmental oxygenation and not necessarily be related to it. The enzymatic reliance of methanogens on a diminishing supply of volcanic nickel links mantle evolution to the redox state of the atmosphere.


Subject(s)
Euryarchaeota/metabolism , Nickel/analysis , Oxidation-Reduction , Seawater/chemistry , Seawater/microbiology , Atmosphere/chemistry , Geologic Sediments/chemistry , Iron/analysis , Nickel/metabolism , Oceans and Seas
5.
Nature ; 448(7157): 1033-6, 2007 Aug 30.
Article in English | MEDLINE | ID: mdl-17728754

ABSTRACT

The hypothesis that the establishment of a permanently oxygenated atmosphere at the Archaean-Proterozoic transition (approximately 2.5 billion years ago) occurred when oxygen-producing cyanobacteria evolved is contradicted by biomarker evidence for their presence in rocks 200 million years older. To sustain vanishingly low oxygen levels despite near-modern rates of oxygen production from approximately 2.7-2.5 billion years ago thus requires that oxygen sinks must have been much larger than they are now. Here we propose that the rise of atmospheric oxygen occurred because the predominant sink for oxygen in the Archaean era-enhanced submarine volcanism-was abruptly and permanently diminished during the Archaean-Proterozoic transition. Observations are consistent with the corollary that subaerial volcanism only became widespread after a major tectonic episode of continental stabilization at the beginning of the Proterozoic. Submarine volcanoes are more reducing than subaerial volcanoes, so a shift from predominantly submarine to a mix of subaerial and submarine volcanism more similar to that observed today would have reduced the overall sink for oxygen and led to the rise of atmospheric oxygen.


Subject(s)
Atmosphere/chemistry , Geologic Sediments/chemistry , Oxygen/metabolism , Volcanic Eruptions , Cyanobacteria/metabolism , History, Ancient , Oceans and Seas , Oxygen/analysis , Photosynthesis , Sulfur Isotopes , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...