Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Neurobiol ; 86: 102876, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652980

ABSTRACT

The coleoid cephalopods (cuttlefish, octopus, and squid) are a group of soft-bodied mollusks that exhibit a wealth of complex behaviors, including dynamic camouflage, object mimicry, skin-based visual communication, and dynamic body patterns during sleep. Many of these behaviors are visually driven and engage the animals' color changing skin, a pixelated display that is directly controlled by neurons projecting from the brain. Thus, cephalopod skin provides a direct readout of neural activity in the brain. During camouflage, cephalopods recreate on their skin an approximation of what they see, providing a window into perceptual processes in the brain. Additionally, cephalopods communicate their internal state during social encounters using innate skin patterns, and create waves of pigmentation on their skin during periods of arousal. Thus, by leveraging the visual displays of cephalopods, we can gain insight into how the external world is represented in the brain and how this representation is transformed into a recapitulation of the world on the skin. Here, we describe the rich skin behaviors of the coleoid cephalopods, what is known about cephalopod neuroanatomy, and how advancements in gene editing, machine learning, optical imaging, and electrophysiological tools may provide an opportunity to explore the neural bases of these fascinating behaviors.


Subject(s)
Cephalopoda , Animals , Cephalopoda/physiology , Behavior, Animal/physiology , Skin Pigmentation/physiology , Skin , Brain/physiology , Skin Physiological Phenomena
2.
Sci Adv ; 6(21): eaba6913, 2020 05.
Article in English | MEDLINE | ID: mdl-32494751

ABSTRACT

To increase fitness, animals use both internal and external states to coordinate reproductive behaviors. The molecular mechanisms underlying this coordination remain unknown. Here, we focused on pheromone-sensing Drosophila Or47b neurons, which exhibit age- and social experience-dependent increase in pheromone responses and courtship advantage in males. FruitlessM (FruM), a master regulator of male courtship behaviors, drives the effects of social experience and age on Or47b neuron responses and function. We show that simultaneous exposure to social experience and age-specific juvenile hormone (JH) induces chromatin-based reprogramming of fruM expression in Or47b neurons. Group housing and JH signaling increase fruM expression in Or47b neurons and active chromatin marks at fruM promoter. Conversely, social isolation or loss of JH signaling decreases fruM expression and increases repressive marks around fruM promoter. Our results suggest that fruM promoter integrates coincident hormone and pheromone signals driving chromatin-based changes in expression and ultimately neuronal and behavioral plasticity.


Subject(s)
Courtship , Drosophila Proteins , Animals , Chromatin/genetics , Drosophila/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Hormones , Male , Nerve Tissue Proteins/genetics , Perception , Pheromones , Sexual Behavior, Animal/physiology , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...