Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Technol ; 51(12): 6727-6734, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28562061

ABSTRACT

Water wells (n = 116) overlying the Eagle Ford, Fayetteville, and Haynesville Shale hydrocarbon production areas were sampled for chemical, isotopic, and groundwater-age tracers to investigate the occurrence and sources of selected hydrocarbons in groundwater. Methane isotopes and hydrocarbon gas compositions indicate most of the methane in the wells was biogenic and produced by the CO2 reduction pathway, not from thermogenic shale gas. Two samples contained methane from the fermentation pathway that could be associated with hydrocarbon degradation based on their co-occurrence with hydrocarbons such as ethylbenzene and butane. Benzene was detected at low concentrations (<0.15 µg/L), but relatively high frequencies (2.4-13.3% of samples), in the study areas. Eight of nine samples containing benzene had groundwater ages >2500 years, indicating the benzene was from subsurface sources such as natural hydrocarbon migration or leaking hydrocarbon wells. One sample contained benzene that could be from a surface release associated with hydrocarbon production activities based on its age (10 ± 2.4 years) and proximity to hydrocarbon wells. Groundwater travel times inferred from the age-data indicate decades or longer may be needed to fully assess the effects of potential subsurface and surface releases of hydrocarbons on the wells.


Subject(s)
Benzene , Methane , Water Pollutants, Chemical , Water Wells , Environmental Monitoring , Groundwater , Hydrocarbons , Oil and Gas Fields
2.
J Environ Qual ; 41(1): 155-69, 2012.
Article in English | MEDLINE | ID: mdl-22218184

ABSTRACT

During April 2007 through September 2008, the USGS collected hydrogeologic and water-quality data from a site on the Bogue Phalia to evaluate the role of groundwater and surface-water interaction on the transport of nitrate to the shallow sand and gravel aquifer underlying the Mississippi Alluvial Plain in northwestern Mississippi. A two-dimensional groundwater/surface-water exchange model was developed using temperature and head data and VS2DH, a variably saturated flow and energy transport model. Results from this model showed that groundwater/surface-water exchange at the site occurred regularly and recharge was laterally extensive into the alluvial aquifer. Nitrate was consistently reported in surface-water samples (n = 52, median concentration = 39.8 µmol/L) although never detected in samples collected from in-stream piezometers or shallow monitoring wells adjacent to the stream (n = 46). These two facts, consistent detections of nitrate in surface water and no detections of nitrate in groundwater, coupled with model results that indicate large amounts of surface water moving through an anoxic streambed, support the case for denitrification and nitrate loss through the streambed.


Subject(s)
Groundwater/chemistry , Nitrates/chemistry , Rivers/chemistry , Water Pollutants, Chemical/chemistry , Environmental Monitoring , Mississippi , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL