Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nanotechnology ; 34(13)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36571848

ABSTRACT

Reconfigurable magnonics have attracted intense interest due to their myriad advantages including energy efficiency, easy tunability and miniaturization of on-chip data communication and processing devices. Here, we demonstrate efficient reconfigurability of spin-wave (SW) dynamics as well as SW avoided crossing by varying bias magnetic field orientation in triangular shaped Ni80Fe20nanodot arrays. In particular, for a range of in-plane angles of bias field, we achieve mutual coherence between two lower frequency modes leading to a drastic modification in the ferromagnetic resonance frequency. Significant modification in magnetic stray field distribution is observed at the avoided crossing regime due to anisotropic dipolar interaction between two neighbouring dots. Furthermore, using micromagnetic simulations we demonstrate that the hybrid SW modes propagate longer through an array as opposed to the non-interacting modes present in this system, indicating the possibility of coherent energy transfer of hybrid magnon modes. This result paves the way for the development of integrated on-chip magnonic devices operating in the gigahertz frequency regime.

2.
ACS Nano ; 15(7): 11734-11742, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34132521

ABSTRACT

Artificial spin ice systems have seen burgeoning interest due to their intriguing physics and potential applications in reprogrammable memory, logic, and magnonics. Integration of artificial spin ice with functional magnonics is a relatively recent research direction, with a host of promising results. As the field progresses, direct in-depth comparisons of distinct artificial spin systems are crucial to advancing the field. While studies have investigated the effects of different lattice geometries, little comparison exists between systems comprising continuously connected nanostructures, where spin-waves propagate via dipole-exchange interaction, and systems with nanobars disconnected at vertices, where spin-wave propagation occurs via stray dipolar field. Gaining understanding of how these very different coupling methods affect both spin-wave dynamics and magnetic reversal is key for the field to progress and provides crucial system-design information including for future systems containing combinations of connected and disconnected elements. Here, we study the magnonic response of two kagome spin ices via Brillouin light scattering, a continuously connected system and a disconnected system with vertex gaps. We observe distinct high-frequency dynamics and magnetization reversal regimes between the systems, with key distinctions in spin-wave localization and mode quantization, microstate trajectory during reversal and internal field profiles. These observations are pertinent for the fundamental understanding of artificial spin systems and broader design and engineering of reconfigurable functional magnonic crystals.

3.
Nanotechnology ; 32(39)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34161940

ABSTRACT

We report here an experimental observation of dynamic dipolar coupling induced magnon-magnon coupling and spin wave (SW) mode splitting in Ni80Fe20cross-shaped nanoring array. Remarkably, we observe an anticrossing feature with minimum frequency gap of 0.96 GHz and the corresponding high cooperativity value of 2.25. Interestingly, splitting of the highest frequency SW mode occurs due to the anisotropic dipolar interactions between the cross nanorings. Furthermore, using micromagnetic simulations we demonstrate that the coupled SW modes propagate longer as opposed to other modes present in this system. Our work paves the way towards integrated hybrid systems-based quantum magnonics and on-chip coherent information transfer.

4.
Nanoscale ; 13(22): 10016-10023, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34037043

ABSTRACT

Using time-resolved magneto-optical Kerr effect (TR-MOKE) microscopy, we demonstrate surface-acoustic-wave (SAW) induced resonant amplification of intrinsic spin-wave (SW) modes, as well as generation of new extrinsic or driven modes at the SAW frequency, in a densely packed two-dimensional array of elliptical Co nanomagnets fabricated on a piezoelectric LiNbO3 substrate. This system can efficiently serve as a magnonic crystal (MC), where the intrinsic shape anisotropy and the strong inter-element magnetostatic interaction trigger the incoherent precession of the nanomagnets' magnetization in the absence of any bias magnetic field, giving rise to the 'intrinsic' SW modes. The magnetoelastic coupling leads to a rich variety of SW phenomena when the SAW is launched along the major axis of the nanomagnets, such as 4-7 times amplification of intrinsic modes (at 3, 4, 7 and 10 GHz) when the applied SAW frequencies are resonant with these frequencies, and the generation of new extrinsic modes at non-resonant SAW frequencies. However, when the SAW is launched along the minor axis, a dominant driven mode appears at the applied SAW frequency. This reveals that the magnetoelastic coupling between SW and SAW is anisotropic in nature. Micromagnetic simulation results are in qualitative agreement with the experimental observations and elucidate the underlying dynamics. Our findings lay the groundwork for bias-field free magnonics, where the SW behavior is efficiently tuned by SAWs. It has important applications in the design of energy efficient on-chip microwave devices, SW logic, and extreme sub-wavelength ultra-miniaturized microwave antennas for embedded applications.

5.
Beilstein J Nanotechnol ; 9: 1123-1134, 2018.
Article in English | MEDLINE | ID: mdl-29719763

ABSTRACT

Ferromagnetic antidot arrays have emerged as a system of tremendous interest due to their interesting spin configuration and dynamics as well as their potential applications in magnetic storage, memory, logic, communications and sensing devices. Here, we report experimental and numerical investigation of ultrafast magnetization dynamics in a new type of antidot lattice in the form of triangular-shaped Ni80Fe20 antidots arranged in a hexagonal array. Time-resolved magneto-optical Kerr effect and micromagnetic simulations have been exploited to study the magnetization precession and spin-wave modes of the antidot lattice with varying lattice constant and in-plane orientation of the bias-magnetic field. A remarkable variation in the spin-wave modes with the orientation of in-plane bias magnetic field is found to be associated with the conversion of extended spin-wave modes to quantized ones and vice versa. The lattice constant also influences this variation in spin-wave spectra and spin-wave mode profiles. These observations are important for potential applications of the antidot lattices with triangular holes in future magnonic and spintronic devices.

6.
ACS Nano ; 11(9): 8814-8821, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28783306

ABSTRACT

Efficient tunability of magnonic spectra is demonstrated in two-dimensional ferromagnetic antidot lattices with different lattice constants arranged in the octagonal lattice which can be considered as quasi-periodic magnonic crystals due to the presence of broken translational symmetry. The precessional dynamics of these samples are investigated in the frequency domain with the help of broadband ferromagnetic resonance spectrometer. A rich variation in the spin wave spectra is observed with the variation of lattice constant as well as the strength and orientation of the bias magnetic field. A broad band of spin wave modes are observed for the denser array, which finally converges to two spin wave modes for the sparsest one. In addition to this, the most intense spin wave frequency shows an 8-fold anisotropy with a superposition of weak 4- and 2-fold anisotropy, which arises due to the angular variation of the magnetostatic field distribution at different regions of the octagonal lattice. Micromagnetic simulations qualitatively reproduce the experimentally observed modes, and the simulated mode profiles reveal the presence of different types of extended and quantized standing spin wave modes in these samples. The observations are important for the tunable and anisotropic propagation of spin waves in magnonic crystal based devices.

7.
Sci Rep ; 6: 33360, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27624662

ABSTRACT

Development of all-magnetic transistor with favorable properties is an important step towards a new paradigm of all-magnetic computation. Recently, we showed such possibility in a Magnetic Vortex Transistor (MVT). Here, we demonstrate enhanced amplification in MVT achieved by introducing geometrical asymmetry in a three vortex sequence. The resulting asymmetry in core to core distance in the three vortex sequence led to enhanced amplification of the MVT output. A cascade of antivortices travelling in different trajectories including a nearly elliptical trajectory through the dynamic stray field is found to be responsible for this amplification. This asymmetric vortex transistor is further used for a successful fan-out operation, which gives large and nearly equal gains in two output branches. This large amplification in magnetic vortex gyration in magnetic vortex transistor is proposed to be maintained for a network of vortex transistor. The above observations promote the magnetic vortex transistors to be used in complex circuits and logic operations.

8.
ACS Appl Mater Interfaces ; 8(28): 18339-46, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27345034

ABSTRACT

Controlled fabrication of periodically arranged embedded nanostructures with strong interelement interaction through the interface between the two different materials has great potential applications in spintronics, spin logic, and other spin-based communication devices. Here, we report the fabrication of two-dimensional bicomponent magnonic crystals in form of embedded Ni80Fe20 nanostructures in Co50Fe50 thin films by nanolithography. The spin wave (SW) spectra studied by a broadband ferromagnetic resonance spectroscopy showed a significant variation as the shape of the embedded nanostructure changes from circular to square. Significantly, in both shapes, a minimum in frequency is obtained at a negative value of bias field during the field hysteresis confirming the presence of a strong exchange coupling at the interface between the two materials, which can potentially increase the spin wave propagation velocity in such structures leading to faster gigahertz frequency magnetic communication and logic devices. The spin wave frequencies and bandgaps show bias field tunability, which is important for above device applications. Numerical simulations qualitatively reproduced the experimental results, and simulated mode profiles revealed the spatial distribution of the SW modes and internal magnetic fields responsible for this observation. Development of such controlled arrays of embedded nanostructures with improved interface can be easily applied to other forms of artificial crystals.

9.
Nanoscale ; 7(43): 18312-9, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26488800

ABSTRACT

Ferromagnetic nanostripes are important elements for a number of interesting technologies including magnetic racetrack memory, spin logic and magnonics. Understanding and controlling magnetization dynamics in such nanostripes are hence important problems in nanoscience and technology. Here we present an all-optical excitation and detection of ultrafast magnetization dynamics, including spin waves, in 5 µm long Ni80Fe20 nanostripes with varying stripe widths from 200 nm down to 50 nm. We observed a strong width dependent variation in the frequency, anisotropy and the spatial nature of spin waves in these systems. The effect of inter-stripe interaction is also studied and the 50 nm wide stripe is found to be nearly magnetostatically isolated, allowing us to detect the dynamics of a 50 nm wide individual stripe using an all-optical measurement technique. The tunability in magnetization dynamics with stripe widths is important for their applications in various spin based technologies.

10.
ACS Nano ; 6(4): 3397-403, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22443955

ABSTRACT

We report the time-domain measurements of optically induced precessional dynamics in a series of Co antidot lattices with fixed antidot diameter of 100 nm and with varying lattice constants (S) between 200 and 500 nm. For the sparsest lattice, we observe two bands of precessional modes with a band gap, which increases substantially with the decrease in S down to 300 nm. At S = 200 nm, four distinct bands with significant band gaps appear. The numerically calculated mode profiles show various localized and extended modes with the propagation direction perpendicular to the bias magnetic field. We numerically demonstrate some composite antidot structures with very rich magnonic spectra spreading between 3 and 27 GHz based upon the above experimental observation.

11.
ACS Nano ; 5(12): 9559-65, 2011 Dec 27.
Article in English | MEDLINE | ID: mdl-22035409

ABSTRACT

We report an all-optical time-domain detection of picosecond magnetization dynamics of arrays of 50 nm Ni(80)Fe(20) (permalloy) dots down to the single nanodot regime. In the single nanodot regime the dynamics reveals one dominant resonant mode corresponding to the edge mode of the 50 nm dot with slightly higher damping than that of the unpatterned thin film. With the increase in areal density of the array both the precession frequency and damping increase significantly due to the increase in magnetostatic interactions between the nanodots, and a mode splitting and sudden jump in apparent damping are observed at an edge-to-edge separation of 50 nm.


Subject(s)
Magnetics/instrumentation , Materials Testing/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Equipment Design , Equipment Failure Analysis , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...