Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mitochondrial DNA B Resour ; 6(11): 3190-3192, 2021.
Article in English | MEDLINE | ID: mdl-34660899

ABSTRACT

In this study, five new mitogenomes from four endemic Lake Baikal sculpins were determined: Cottocomephorus grewingkii (Dybowski, 1874) (GB#MW732165), Cottocomephorus inermis (Yakovlev, 1890) (GB#MW732163), and Paracottus knerii (Dybowski, 1874) (GB#MW732164) (Family Cottocomephoridae - Bighead sculpins), and from two specimens of Procottus major Taliev, 1949 (GB##MW732166, MW732167) from Family Abyssocottidae (Deep-water sculpins). Together with recently published mitogenomes of Baikal Oilfishes (Sandel et al. 2017), the first mitogenome-based phylogenetic tree for all three endemic Baikal sculpin families is presented. Complete mitogenome phylogeny supports the monophyletic origin of the lake Baikal sculpins species flock, but does not support the monophyly of the family Cottocomephoridae (Bighead sculpins).

2.
Sci Rep ; 10(1): 722, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31959974

ABSTRACT

The enigmatic and poorly studied sturgeon genus Pseudoscaphirhynchus (Scaphirhynchinae: Acipenseridae) comprises three species: the Amu Darya shovelnose sturgeon (Pseudoscaphirhynchus kaufmanni (Bogdanow)), dwarf Amu Darya shovelnose sturgeon P. hermanni (Kessler), and Syr Darya shovelnose sturgeon (P. fedtschenkoi (Bogdanow). Two species - P. hermanni and P. kaufmanni - are critically endangered due to the Aral Sea area ecological disaster, caused by massive water use for irrigation to support cotton agriculture, subsequent pesticide pollution and habitat degradation. For another species - P. fedtschenkoi - no sightings have been reported since 1960-s and it is believed to be extinct, both in nature and in captivity. In this study, complete mitochondrial (mt) genomes of these three species of Pseudoscaphirhynchus were characterized using Illumina and Sanger sequencing platforms. Phylogenetic analyses showed the significant divergence between Amu Darya and Syr Darya freshwater sturgeons and supported the monophyletic origin of the Pseudoscaphirhynchus species. We confirmed that two sympatric Amu Darya species P. kaufmanni and P. hermanni form a single genetic cluster, which may require further morphological and genetic study to assess possible hybridization, intraspecific variation and taxonomic status and to develop conservation measures to protect these unique fishes.


Subject(s)
Endangered Species , Fishes/genetics , Genome, Mitochondrial , Phylogeny , Animals , Asia, Central , Ecosystem , Extinction, Biological , Fishes/classification , Hydrobiology , Species Specificity , Water Pollution, Chemical
3.
Genome Biol Evol ; 11(9): 2605-2618, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31406984

ABSTRACT

Adaptation of threespine stickleback to freshwater involves parallel recruitment of freshwater alleles in clusters of closely linked sites, or divergence islands (DIs). However, it remains unclear to what extent the DIs and the alleles that constitute them coincide between populations that underwent adaptation to freshwater independently. We examine threespine sticklebacks from ten freshwater lakes that emerged 500-1500 years ago in the White Sea basin, with the emphasis on repeatability of genomic patterns of adaptation among the lake populations and the role of local recombination rate in the distribution and structure of DIs. The 65 detected DIs are clustered in the genome, forming 12 aggregations, and this clustering cannot be explained by the variation of the recombination rate. Only 21 of the DIs are present in all the freshwater populations, likely being indispensable for successful colonization of freshwater environment by the ancestral marine population. Within most DIs, the same set of single nucleotide polymorphisms (SNPs) distinguish marine and freshwater haplotypes in all the lake populations; however, in some DIs, freshwater alleles differ between populations, suggesting that they could have been established by recruitment of different haplotypes in different populations.


Subject(s)
Perciformes/genetics , Perciformes/physiology , Polymorphism, Single Nucleotide , Adaptation, Physiological , Animals , Fresh Water , Genetics, Population , Perciformes/classification , Russia , Seawater , Selection, Genetic
4.
Mol Phylogenet Evol ; 135: 31-44, 2019 06.
Article in English | MEDLINE | ID: mdl-30844445

ABSTRACT

Phylogenetic relationships and phylogeography of six species of Caucasian barbels, the genus Barbus s. str., were studied based on extended geographic coverage and using mtDNA and nDNA markers. Based on 27 species studied, matrilineal phylogeny of the genus Barbus is composed of two clades - (a) West European clade, (b) Central and East European clade. The latter comprises two subclades: (b1) Balkanian subclade, and (b2) Ponto-Caspian one that includes 11 lineages mainly from Black and Caspian Sea drainages. Caucasian barbels are not monophyletic and subdivided for two groups. The Black Sea group encompasses species from tributaries of Black Sea including re-erected B. rionicus and excluding B. kubanicus. The Caspian group includes B. ciscaucasicus, B. cyri (with B. goktschaicus that might be synonymized with B. cyri), B. lacerta from the Tigris-Euphrates basin and B. kubanicus from the Kuban basin. Genetic structure of Black Sea barbels was influenced by glaciation-deglaciation periods accompanying by freshwater phases, periods of migration and colonization of Black Sea tributaries. Intra- and intergeneric hybridization among Caucasian barbines was revealed. In the present study, we report about finding of B. tauricus in the Kuban basin, where only B. kubanicus was thought to inhabit. Hybrids between these species were detected based on both mtDNA and nDNA markers. Remarkably, Kuban population of B. tauricus is distant to closely located conspecific populations and we consider it as relic. We highlight revealing the intergeneric hybridization between evolutionary tetraploid (2n = 100) B. goktschaicus and evolutionary hexaploid (2n = 150) Capoeta sevangi in Lake Sevan.


Subject(s)
Cyprinidae/classification , Cyprinidae/genetics , Hybridization, Genetic , Phylogeny , Phylogeography , Actins/genetics , Animals , Base Sequence , Bayes Theorem , Black Sea , DNA, Mitochondrial/genetics , Genetic Variation , Haplotypes/genetics , Introns/genetics , Time Factors
5.
Mitochondrial DNA B Resour ; 1(1): 195-197, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-33644342

ABSTRACT

Two complete mitochondrial genome sequences of ship sturgeon Acipenser nudiventris from the Caspian Sea and from Balkhash Lake (introduced from the Aral Sea during the last century) were determined by PCR-based sequencing method. The whole mitogenome sequences have been deposited in GenBank under accession numbers KU321568 and KU321569.

6.
PLoS Genet ; 10(10): e1004696, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25299485

ABSTRACT

Adaptation is driven by natural selection; however, many adaptations are caused by weak selection acting over large timescales, complicating its study. Therefore, it is rarely possible to study selection comprehensively in natural environments. The threespine stickleback (Gasterosteus aculeatus) is a well-studied model organism with a short generation time, small genome size, and many genetic and genomic tools available. Within this originally marine species, populations have recurrently adapted to freshwater all over its range. This evolution involved extensive parallelism: pre-existing alleles that adapt sticklebacks to freshwater habitats, but are also present at low frequencies in marine populations, have been recruited repeatedly. While a number of genomic regions responsible for this adaptation have been identified, the details of selection remain poorly understood. Using whole-genome resequencing, we compare pooled genomic samples from marine and freshwater populations of the White Sea basin, and identify 19 short genomic regions that are highly divergent between them, including three known inversions. 17 of these regions overlap protein-coding genes, including a number of genes with predicted functions that are relevant for adaptation to the freshwater environment. We then analyze four additional independently derived young freshwater populations of known ages, two natural and two artificially established, and use the observed shifts of allelic frequencies to estimate the strength of positive selection. Adaptation turns out to be quite rapid, indicating strong selection acting simultaneously at multiple regions of the genome, with selection coefficients of up to 0.27. High divergence between marine and freshwater genotypes, lack of reduction in polymorphism in regions responsible for adaptation, and high frequencies of freshwater alleles observed even in young freshwater populations are all consistent with rapid assembly of G. aculeatus freshwater genotypes from pre-existing genomic regions of adaptive variation, with strong selection that favors this assembly acting simultaneously at multiple loci.


Subject(s)
Adaptation, Physiological/genetics , Biological Evolution , Genetics, Population , Polymorphism, Single Nucleotide , Smegmamorpha/genetics , Animals , Aquatic Organisms , Female , Fresh Water , Gene Frequency , Genome , Male , Russia , Selection, Genetic
7.
Ecol Evol ; 3(8): 2612-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24567827

ABSTRACT

Legally certified sturgeon fisheries require population protection and conservation methods, including DNA tests to identify the source of valuable sturgeon roe. However, the available genetic data are insufficient to distinguish between different sturgeon populations, and are even unable to distinguish between some species. We performed high-throughput single-nucleotide polymorphism (SNP)-genotyping analysis on different populations of Russian (Acipenser gueldenstaedtii), Persian (A. persicus), and Siberian (A. baerii) sturgeon species from the Caspian Sea region (Volga and Ural Rivers), the Azov Sea, and two Siberian rivers. We found that Russian sturgeons from the Volga and Ural Rivers were essentially indistinguishable, but they differed from Russian sturgeons in the Azov Sea, and from Persian and Siberian sturgeons. We identified eight SNPs that were sufficient to distinguish these sturgeon populations with 80% confidence, and allowed the development of markers to distinguish sturgeon species. Finally, on the basis of our SNP data, we propose that the A. baerii-like mitochondrial DNA found in some Russian sturgeons from the Caspian Sea arose via an introgression event during the Pleistocene glaciation. In the present study, the high-throughput genotyping analysis of several sturgeon populations was performed. SNP markers for species identification were defined. The possible explanation of the baerii-like mitotype presence in some Russian sturgeons in the Caspian Sea was suggested.

SELECTION OF CITATIONS
SEARCH DETAIL
...