Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Math Phys Eng Sci ; 475(2222): 20180283, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30853838

ABSTRACT

We introduce the idemetric property, which formalizes the idea that most nodes in a graph have similar distances between them, and which turns out to be quite standard amongst small-world network models. Modulo reasonable sparsity assumptions, we are then able to show that a strong form of idemetricity is actually equivalent to a very weak expander condition (PUMP). This provides a direct way of providing short proofs that small-world network models such as the Watts-Strogatz model are strongly idemetric (for a wide range of parameters), and also provides further evidence that being idemetric is a common property. We then consider how satisfaction of the idemetric property is relevant to algorithm design. For idemetric graphs, we observe, for example, that a single breadth-first search provides a solution to the all-pairs shortest paths problem, so long as one is prepared to accept paths which are of stretch close to 2 with high probability. Since we are able to show that Kleinberg's model is idemetric, these results contrast nicely with the well known negative results of Kleinberg concerning efficient decentralized algorithms for finding short paths: for precisely the same model as Kleinberg's negative results hold, we are able to show that very efficient (and decentralized) algorithms exist if one allows for reasonable preprocessing. For deterministic distributed routing algorithms we are also able to obtain results proving that less routing information is required for idemetric graphs than in the worst case in order to achieve stretch less than 3 with high probability: while Ω(n 2) routing information is required in the worst case for stretch strictly less than 3 on almost all pairs, for idemetric graphs the total routing information required is O(nlog(n)).

2.
Philos Trans A Math Phys Eng Sci ; 370(1971): 3488-511, 2012 Jul 28.
Article in English | MEDLINE | ID: mdl-22711870

ABSTRACT

We study the notion of universality probability of a universal prefix-free machine, as introduced by C. S. Wallace. We show that it is random relative to the third iterate of the halting problem and determine its Turing degree and its place in the arithmetical hierarchy of complexity. Furthermore, we give a computational characterization of the real numbers that are universality probabilities of universal prefix-free machines.

SELECTION OF CITATIONS
SEARCH DETAIL
...