Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Protoc ; 4(3): e1005, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38465381

ABSTRACT

Embryonic limb bud-derived micromass cultures are valuable tools for investigating cartilage development, tissue engineering, and therapeutic strategies for cartilage-related disorders. This collection of fine-tuned protocols used in our laboratories outlines step-by-step procedures for the isolation, expansion, and differentiation of primary mouse limb bud cells into chondrogenic micromass cultures. Key aspects covered in these protocols include synchronized fertilization of mice (Basic Protocol 1), tissue dissection, cell isolation, micromass formation, and culture optimization parameters, such as cell density and medium composition (Basic Protocol 2). We describe techniques for characterizing the chondrogenic differentiation process by histological analysis (Basic Protocol 3). The protocols also address common challenges encountered during the process and provide troubleshooting strategies. This fine-tuned comprehensive protocol serves as a valuable resource for scientists working in the fields of developmental biology, cartilage tissue engineering, and regenerative medicine, offering an updated methodology for the study of efficient chondrogenic differentiation and cartilage tissue regeneration. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Synchronized fertilization of mice Basic Protocol 2: Micromass culture of murine embryonic limb bud-derived cells Basic Protocol 3: Qualitative assessment of cartilage matrix production using Alcian blue staining.


Subject(s)
Cartilage , Chondrogenesis , Animals , Mice , Cells, Cultured , Cell Differentiation , Mammals
2.
Curr Protoc ; 3(7): e835, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37427867

ABSTRACT

Much of the skeletal system develops by endochondral ossification, a process that takes place in early fetal life. This makes the early stages of chondrogenesis, i.e., when chondroprogenitor mesenchymal cells differentiate to chondroblasts, challenging to study in vivo. In vitro methods for the study of chondrogenic differentiation have been available for some time. There is currently high interest in developing fine-tuned methodology that would allow chondrogenic cells to rebuild articular cartilage and restore joint functionality. The micromass culture system that relies on embryonic limb bud-derived chondroprogenitor cells is a popular method for the study of the signaling pathways that control the formation and maturation of cartilage. In this protocol, we describe a technique fine-tuned in our laboratory for culturing limb bud-derived mesenchymal cells from early-stage chick embryos in high density (Basic Protocol 1). We also provide a fine-tuned method for high-efficiency transient transfection of cells before plating using electroporation (Basic Protocol 2). In addition, protocols for histochemical detection of cartilage extracellular matrix using dimethyl methylene blue, Alcian blue, and safranin O are also provided (Basic Protocol 3 and Alternate Protocols 1 and 2, respectively). Finally, a step-by-step guide on a cell viability/proliferation assay using MTT reagent is also described (Basic Protocol 4). © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Micromass culture of chick embryonic limb bud-derived cells Basic Protocol 2: Transfection of cells with siRNA constructs using electroporation prior to micromass culturing Basic Protocol 3: Qualitative and quantitative assessment of cartilage matrix production using dimethyl methylene blue staining and image analysis Alternate Protocol 1: Qualitative assessment of cartilage matrix production using Alcian blue staining Alternate Protocol 2: Qualitative assessment of cartilage matrix production using safranin O staining Basic Protocol 4: Measurement of mitochondrial activity with the MTT assay.


Subject(s)
Chickens , Methylene Blue , Animals , Chick Embryo , Methylene Blue/metabolism , Alcian Blue/metabolism , Cells, Cultured , Cartilage/metabolism , Regeneration
3.
Curr Protoc ; 3(3): e692, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36880775

ABSTRACT

Articular cartilage is characterized by a low density of chondrocytes surrounded by an abundant extracellular matrix (ECM) consisting of a dense mixture of collagens, proteoglycans, and glycosaminoglycans. Due to its low cellularity and high proteoglycan content, it is particularly challenging to extract high-quality total RNA suitable for sensitive high-throughput downstream applications such as RNA sequencing (RNA-Seq). Available protocols for high-quality RNA isolation from articular chondrocytes are inconsistent, resulting in suboptimal yield and compromised quality. This poses a significant difficulty in the application of RNA-Seq to study the cartilage transcriptome. Current protocols rely either on dissociation of cartilage ECM by collagenase digestion or pulverizing cartilage using various methods prior to RNA extraction. However, protocols for cartilage processing vary significantly depending on the species and source of cartilage within the body. Protocols for isolating RNA from human or large mammal (e.g., horse or cattle) cartilage samples are available, but this is not the case for chicken cartilage, despite the species being extensively used in cartilage research. Here, we present two improved RNA isolation protocols based on pulverization of fresh articular cartilage using a cryogenic mill or on enzymatic digestion using 1.2% (w/v) collagenase II. Our protocols optimize the collection and tissue processing steps to minimize RNA degradation and enhance RNA purity. Our results show that RNA purified from chicken articular cartilage using these methods has appropriate quality for RNA-Seq experiments. The procedure is applicable for RNA extraction from cartilage from other species such as dog, cat, sheep, and goat. The workflow for RNA-Seq analysis is also described here. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Extraction of total RNA from pulverized chicken articular cartilage Alternate Protocol: Extraction of total RNA from collagen-digested articular cartilage Support Protocol: Dissection of chicken articular cartilage from the knee joint Basic Protocol 2: RNA sequencing of total RNA from chicken articular cartilage.


Subject(s)
Cartilage, Articular , Humans , Animals , Cattle , Dogs , Horses , Sheep , High-Throughput Nucleotide Sequencing , Chondrocytes , Chickens/genetics , Goats , Proteoglycans , RNA/genetics
4.
Biopolymers ; 73(6): 645-56, 2004 Apr 15.
Article in English | MEDLINE | ID: mdl-15048768

ABSTRACT

Sequential oligopeptides based on a pentapeptide (TKPKG) derived from tuftsin with different lengths were synthesized by stepwise solid phase methodology. These highly soluble oligomers were nontoxic on mouse spleen cells, and other biological data suggested that tuftsin-like properties were also presented. The (TKPKG)n (n=2,4,6,8) oligopeptides were not immunogenic; however, they increased sheep red blood cells (SRBC) antigen specific antibody response in mice, demonstrating their immunostimulatory effect. Chemotactic activity was also found on J774 monocyte cells, while MRC5 fibroblasts were chemotactically nonresponders to the tested forms of tuftsin. These oligomers showed unordered and flexible structure by CD measurements, confirmed by computer modeling studies indicating also a fairly good accessibility of the epsilon-amino group of each lysine residue. Data suggest that these new oligotuftsin derivatives can be considered as promising carriers for synthetic vaccine.


Subject(s)
Oligopeptides/chemistry , Oligopeptides/immunology , Tuftsin/chemistry , Amino Acid Sequence , Animals , Antigen-Antibody Reactions , Cell Line , Chemotaxis/drug effects , Erythrocytes/immunology , Fibroblasts/drug effects , Fibroblasts/physiology , Mice , Mice, Inbred C3H , Mice, Inbred CBA , Models, Molecular , Monocytes/drug effects , Monocytes/physiology , Oligopeptides/pharmacology , Oligopeptides/toxicity , Protein Conformation , Sheep , Spleen/cytology , Spleen/drug effects , Tuftsin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...