Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pediatr Res ; 49(6): 826-33, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11385145

ABSTRACT

Angiotensin II (ANG II) contracts umbilical arteries and has been hypothesized to regulate fetal blood pressure primarily by altering umbilical vascular resistance. To determine whether systemic arteries in term fetal sheep are sensitive to ANG II, isometric contraction of endothelium-intact isolated fetal renal, mesenteric, and umbilical arteries in response to ANG II was studied. ANG II (10(-7) M) elicited contractile responses in all three vessels (43 +/- 8%, 99 +/- 21%, and 105 +/- 5% of the maximal response seen with 90 mM KCl for renal, mesenteric, and umbilical arteries, respectively). The time course of the contractile responses differed among the vessels: renal and mesenteric arteries exhibited rapid transient contraction followed by relaxation, whereas umbilical artery displayed a more slowly developing but sustained contraction (1 +/- 0%, 3 +/- 1%,and 93 +/- 4% of maximal contractile response at 5 min, for renal, mesenteric, and umbilical arteries, respectively). The AT1 receptor antagonist, losartan (10(-6) M), abolished contractile responses in renal and mesenteric arteries but only slowed the contraction in umbilical artery in response to ANG II and had no effect on maximal tension. AT2 receptor blockade (PD 123319, 10(-7) M) had no significant effect on the response to ANG II in any vessel. Indomethacin (10(-6) M) significantly potentiated contraction to ANG II in renal and mesenteric but not umbilical arteries. Northern and Western blot analyses demonstrated the presence of AT1 mRNA and protein in all three vessels. Immunostaining for the AT1 receptor was present in endothelium and the tunica media. These findings demonstrate the AT1 receptor is present and functionally active in fetal systemic arteries and are consistent with previous findings that the umbilical circulation displays a greater responsiveness to ANG II than the systemic vasculature.


Subject(s)
Angiotensin II/pharmacology , Fetus/drug effects , Umbilical Arteries/drug effects , Vasoconstriction/drug effects , Angiotensin II/physiology , Animals , Female , Fetus/physiology , In Vitro Techniques , Mesenteric Arteries/drug effects , Mesenteric Arteries/physiology , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Angiotensin, Type 1 , Receptor, Angiotensin, Type 2 , Receptors, Angiotensin/genetics , Receptors, Angiotensin/metabolism , Renal Artery/drug effects , Renal Artery/physiology , Sheep , Umbilical Arteries/physiology , Vasoconstriction/physiology
2.
Gene ; 246(1-2): 209-18, 2000 Apr 04.
Article in English | MEDLINE | ID: mdl-10767542

ABSTRACT

The sequence from a human EST (IMAGE:259322) with homology to the nucleotide-sensitive chloride conductance regulator (ICln) was used to screen a human aortic cDNA library. The probe sequence was from a region of the EST lacking homology to ICln, and the goal was to isolate an ICln-like gene. A 2843bp cDNA clone with an open reading frame coding for a 561 amino acid protein was isolated. This clone had no homology to ICln. PROSITE analysis of the putative protein sequence reveals one tudor and two K homology (KH) domains. The gene has therefore been named TDRKH. Both KH and tudor motifs are involved in binding to RNA or single-strand DNA. PCR analysis demonstrated that TDRKH is alternatively spliced in several ways and alternatively polyadenylated at multiple sites. Northern analysis confirmed the presence of messages of multiple lengths with predominant bands at 2.8 and 4.0 kb and also demonstrated that TDRKH is widely expressed in human tissues. Within an intron of TDRKH, there is a region with 90% homology to ICln. This sequence, which is incorporated into the alternatively spliced message represented by IMAGE:259322, contains a 2 bp deletion that disrupts the ICln reading frame and therefore represents an ICln pseudogene. The TDRKH gene was mapped to the Epidermal Differentiation Complex (EDC) at chromosome 1q21 by radiation hybrid mapping and STS content of genomic clones from that region. The EDC contains a large cluster of related genes involved in terminal differentiation of the epidermis. It remains to be determined whether TDRKH has a specific role in epithelial function.


Subject(s)
Alternative Splicing , Ion Channels , RNA-Binding Proteins/genetics , Amino Acid Sequence , Base Sequence , Binding Sites , Blotting, Northern , Chloride Channels/genetics , Chromosome Mapping , Chromosomes, Human, Pair 1/genetics , DNA/chemistry , DNA/genetics , DNA, Complementary/chemistry , DNA, Complementary/genetics , DNA, Complementary/isolation & purification , Fetus/metabolism , Gene Expression , Gene Expression Regulation, Developmental , Genes/genetics , Humans , Introns , Molecular Sequence Data , Protein Isoforms/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Tissue Distribution
3.
Am J Physiol Heart Circ Physiol ; 278(5): H1527-36, 2000 May.
Article in English | MEDLINE | ID: mdl-10775130

ABSTRACT

Anion currents contribute to vascular smooth muscle (VSM) membrane potential. The substitution of extracellular chloride (Cl) with iodide (I) or bromide (Br) initially inhibited and then potentiated isometric contractile responses of rat aortic rings to norepinephrine. Anion substitution alone produced a small relaxation, which occurred despite a lack of active tone and minimal subsequent contraction of endothelium-intact rings (4.2 +/- 1.2% of the response to 90 mM KCl). Endothelium-denuded rings underwent a similar initial relaxation but then contracted vigorously (I > Br). Responses to 130 mM I (93.7 +/- 1.9% of 90 mM KCl) were inhibited by nifedipine (10(-6) M), niflumic acid (10(-5) M), tamoxifen (10(-5) M), DIDS (10(-4) M), and HCO(-)(3)-free buffer (HEPES 10 mM) but not by bumetanide (10(-5) M). Intact rings treated with N(omega)-nitro-L-arginine (10(-4) M) responded weakly to I (15.5 +/- 2.1% of 90 mM KCl), whereas hemoglobin (10(-5) M), indomethacin (10(-6) M), 17-octadecynoic acid (10(-5) M), and 1H-[1,2, 4]oxadiazole[4,3-a]quinoxalin-1-one (10(-6) M) all failed to augment the response of intact rings to I. We hypothesize that VSM takes up I primarily via an anion exchanger. Subsequent I efflux through anion channels having a selectivity of I > Br > Cl produces depolarization. In endothelium-denuded or agonist-stimulated vessels, this current is sufficient to activate voltage-dependent calcium channels and cause contraction. Neither nitric oxide nor prostaglandins are the primary endothelial modulator of these anion channels. If they are regulated by an endothelium-dependent hyperpolarizing factor it is not a cytochrome P-450 metabolite.


Subject(s)
Aorta/metabolism , Endothelium, Vascular/metabolism , Ion Channels/metabolism , Sodium Iodide/pharmacology , Vasoconstriction/physiology , Animals , Aorta/drug effects , Bromides/pharmacology , Calcium Channel Blockers/pharmacology , Chloride Channels/antagonists & inhibitors , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , In Vitro Techniques , Ion Channels/drug effects , Ion Transport/drug effects , Male , Nifedipine/pharmacology , Norepinephrine/pharmacology , Potassium Chloride/pharmacology , Rats , Rats, Sprague-Dawley , Sodium Chloride/pharmacology , Sodium Compounds/pharmacology , Sulfuric Acid Esters/pharmacology , Vasoconstriction/drug effects
4.
J Mol Cell Cardiol ; 31(3): 657-66, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10198195

ABSTRACT

Chloride (Cl) ion channels play a critical role in the response of both vascular smooth muscle (VSM) and endothelial (ENDO) cells to agonist stimulation. In VSM, agonist-induced Cl currents produce membrane depolarization, resulting in calcium influx through voltage-sensitive channels. ENDO cells also activate Cl currents after either agonist application or perturbation of cell volume. Although some of these currents have been characterized biophysically, the genes involved have not been identified. The CLCN family of voltage-dependent Cl channel genes comprises nine members (CLCN1-7, Ka and Kb) which demonstrate quite diverse functional characteristics while sharing significant sequence homology. We used Northern-blot analysis to study the expression of these Cl channel genes in cultured human aortic and coronary VSM cells and in aortic ENDO cells. CLCN3 is by far the most abundant CLC channel mRNA in both VSM and ENDO cells. Lower levels of expression are seen for CLCN2, CLCN4, CLCN5 and CLCN6. Expression levels were similar in VSM and ENDO cells except for CLCN4 which was more highly expressed in ENDO cells. In situ hybridization was used to confirm the expression of CLCN3 in intact human fetal lung. CLCN3 message was seen in VSM and ENDO cells of both large and small pulmonary vessels, indicating that their detection by Northern blotting was not an artifact of cell culture. CLCN3 is also expressed in pulmonary epithelial and bronchial smooth muscle cells but not in chondrocytes or pulmonary interstitial cells. Recent studies suggest that CLCN3 may encode the swelling-induced Cl conductance. We used whole cell patch clamp recording to demonstrate swelling-induced Cl currents in these cultured VSM cells. This suggests that the CLCN3 protein is expressed; however, the functional role of this current in VSM remains to be determined.


Subject(s)
Blood Vessels/metabolism , Chloride Channels/genetics , Blotting, Northern , CLC-2 Chloride Channels , Diagnostic Imaging , Humans , In Situ Hybridization , Lung/anatomy & histology , Lung/embryology , Lung/metabolism , Multigene Family/genetics , Oligonucleotide Probes , Patch-Clamp Techniques
5.
Am J Physiol ; 275(1): H151-60, 1998 07.
Article in English | MEDLINE | ID: mdl-9688908

ABSTRACT

Norepinephrine (NE) increases Cl- efflux from vascular smooth muscle (VSM) cells. An increase in Cl- conductance produces membrane depolarization. We hypothesized that if Cl- currents are important for agonist-induced depolarization, then interfering with cellular Cl- handling should alter contractility. Isometric contraction of rat aortic rings was studied in a bicarbonate buffer. Substitution of extracellular Cl- with 130 mM methanesulfonate (MS; 8 mM Cl-) did not cause contraction. NE- and serotonin-induced contractions were potentiated in this low-Cl- buffer, whereas responses to K+, BAY K 8644, or NE in the absence of Ca2+ were unaltered. Substitution of Cl- with I- or Br- suppressed responses to NE. Inhibition of Cl- transport with bumetanide (10(-5) M) or bicarbonate-free conditions (10 mM HEPES) inhibited NE- but not KCl-induced contraction. The Cl--channel blockers DIDS (10(-3) M), anthracene-9-carboxylic acid (10(-3) M), and niflumic acid (10(-5) M) all inhibited NE-induced contraction, whereas tamoxifen (10(-5) M) did not. Finally, disruption of sarcoplasmic reticular function with cyclopiazonic acid (10(-7) M) or ryanodine (10(-5) M) prevented the increase in the peak response to NE produced by low-Cl- buffer. We conclude that a Cl- current with a permeability sequence of I- > Br- > Cl- > MS is critical to agonist-induced contraction of VSM.


Subject(s)
Aorta, Thoracic/physiology , Chloride Channels/physiology , Chlorides/pharmacology , Isometric Contraction/physiology , Muscle, Smooth, Vascular/physiology , Norepinephrine/pharmacology , Vasoconstriction/physiology , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Animals , Anions/metabolism , Anthracenes/pharmacology , Aorta, Thoracic/drug effects , Bicarbonates/pharmacology , Cell Membrane Permeability , Chloride Channels/antagonists & inhibitors , In Vitro Techniques , Indoles/pharmacology , Isometric Contraction/drug effects , Male , Mesylates/pharmacology , Muscle, Smooth, Vascular/drug effects , Niflumic Acid/pharmacology , Potassium/pharmacology , Rats , Rats, Sprague-Dawley , Ryanodine/pharmacology , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/physiology , Serotonin/pharmacology , Vasoconstriction/drug effects , Vasodilator Agents/pharmacology
6.
Am J Physiol ; 275(1): H161-8, 1998 07.
Article in English | MEDLINE | ID: mdl-9688909

ABSTRACT

Activation of a Cl- current is critical to agonist-induced activation of rat aortic smooth muscle contraction. Substituting extracellular Cl- with 130 mM methanesulfonate (8 mM Cl-) increases the contractile response to norepinephrine (NE) but not to KCl. We hypothesized that endothelial factors modulate this effect. Removing the endothelium (rubbing) or treatment with N-nitro L-arginine (L-NNA) markedly increased the potentiation of NE-induced contraction by low-Cl- buffer. Indomethacin had no effect. The previously demonstrated ability of Cl--channel blockers (DIDS, anthracene-9-carboxylic acid, niflumic acid) or Cl- transport inhibitors (bumetanide, bicarbonate-free buffer) to inhibit responses to NE was not altered by L-NNA. Low-Cl- buffer alone did not contract intact rings but produced nifedipine-sensitive contractile responses after rubbing or L-NNA treatment. These data suggest that the Cl- conductance of smooth muscle in intact blood vessels is low but increases with withdrawal of reduced nitric oxide (NO') or agonist stimulation. Rubbing or L-NNA increased the sensitivity of rings to KCl but not to NE. Nifedipine reduced both sensitivity and maximum response to NE in intact vessels. L-NNA increased the maximum response to NE in nifedipine-treated rings without changing sensitivity. We conclude that although NO' affects both the voltage-dependent and voltage-independent components of contraction, sensitivity to NE is determined by the voltage-dependent portion. The voltage change required for a full response to NE is dependent on activation of a Cl- current that may be under the tonic regulatory influence of NO'.


Subject(s)
Aorta, Thoracic/physiology , Chloride Channels/physiology , Endothelium, Vascular/physiology , Isometric Contraction/physiology , Muscle, Smooth, Vascular/physiology , Norepinephrine/pharmacology , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Animals , Anthracenes/pharmacology , Aorta, Thoracic/drug effects , Chloride Channels/antagonists & inhibitors , In Vitro Techniques , Indomethacin/pharmacology , Isometric Contraction/drug effects , Male , Models, Cardiovascular , Muscle, Smooth, Vascular/drug effects , Nifedipine/pharmacology , Niflumic Acid/pharmacology , Nitric Oxide/physiology , Nitroarginine/pharmacology , Rats , Rats, Sprague-Dawley , Vasoconstriction/drug effects
8.
J Immunol ; 141(11): 3951-7, 1988 Dec 01.
Article in English | MEDLINE | ID: mdl-2846696

ABSTRACT

NK cells mediate both direct cytotoxicity against a variety of tumor cells and indirect (FcR-dependent) cytotoxicity against antibody-coated targets. When cloned human NK cells (CD16+/CD3-) were exposed to NK-sensitive targets for 30 min, the level of inositol phosphates rose two to five times above background. The rise in inositol phosphates induced by NK-sensitive targets was paralleled by an increase in intracellular free calcium concentration ([Ca2+]i). A panel of tumor cells that were resistant to NK cell lysis did not stimulate significant levels of inositol phosphate production and did not induce an elevation of intracellular free calcium. Ligation of the FcR (CD16) with the mAb 3G8 also triggered phosphoinositide turnover. Kinetic experiments demonstrated that stimulation by either susceptible target cells or by FcR ligation led to rapid (less than 1 min) generation of the Ca2+-mobilizing second messenger, inositol trisphosphate, with slower accumulation of inositol bisphosphate and inositol monophosphate. Previous studies have demonstrated that activation of the cAMP-dependent second messenger pathway strongly inhibits NK cell-mediated cytotoxic functions. Treatment of NK effector cells with forskolin to elevate intracellular cAMP levels resulted in a concentration-dependent inhibition of phosphoinositide hydrolysis induced by both NK-sensitive targets and 3G8-mediated FcR ligation. These results suggest that phosphoinositide turnover represents a critical early event in the human NK cell cytolytic process. Moreover, the potent inhibitory effect of cAMP on NK cell cytotoxicity may be explained by the uncoupling of NK receptors from phospholipase C-mediated phosphoinositide hydrolysis.


Subject(s)
Cyclic AMP/physiology , Cytotoxicity, Immunologic , Inositol Phosphates/biosynthesis , Killer Cells, Natural/metabolism , Lymphocyte Activation , Signal Transduction , Sugar Phosphates/biosynthesis , Antibody-Dependent Cell Cytotoxicity , Calcium/metabolism , Clone Cells/immunology , Clone Cells/metabolism , Humans , Intracellular Fluid/metabolism , Killer Cells, Natural/immunology , Kinetics , Phosphatidylinositols/metabolism , Receptors, Fc/metabolism
9.
Mol Cell Biol ; 8(12): 5448-58, 1988 Dec.
Article in English | MEDLINE | ID: mdl-2977423

ABSTRACT

The murine T-lymphoma cell line LBRM-33 is known to require synergistic signals delivered through the antigen receptor (Ti-CD3) complex, together with interleukin 1 (IL-1), for activation of IL-2 gene expression and IL-2 production. Although 12-O-tetradecanoylphorbol-13-acetate (TPA) was capable of replacing IL-1 as an activating stimulus under certain conditions, biologic studies indicated that TPA failed to synergize with Ti-CD3-dependent stimuli under conditions in which IL-1 was clearly active. Acute exposure to TPA and other active phorbol esters resulted in a concentration-dependent inhibition of the increases in phosphoinositide hydrolysis and intracellular free Ca2+ concentration stimulated by phytohemagglutinin or anti-Ti antibodies. TPA treatment induced no direct alteration of phospholipase C enzymatic activities in LBRM-33 cells. In contrast, both Ti-CD3 cross-linkage and TPA rapidly stimulated the phosphorylation of identical CD3 complex polypeptides, presumably via activation of protein kinase C. Exposure of LBRM-33 cells to TPA resulted in a time-dependent, partial down-regulation of surface Ti-CD3 expression. Thus, TPA treatment inhibited the responsiveness of LBRM-33 cells to Ti-CD3-dependent stimuli by inducing an early desensitization of Ti-CD3 receptors, followed by a decrease in membrane receptor expression. These studies indicate that phorbol esters deliver bidirectional signals that both inhibit Ti-CD3-dependent phosphoinositide hydrolysis and augment IL-2 production in LBRM-33 cells.


Subject(s)
Protein Kinase C/metabolism , Receptors, Antigen, T-Cell/physiology , Signal Transduction , Animals , Antigens, Differentiation, T-Lymphocyte/immunology , CD3 Complex , Calcium/metabolism , Cell Line , Cell Membrane/physiology , Enzyme Activation , Inositol Phosphates/metabolism , Interleukin-2/biosynthesis , Kinetics , Lymphocyte Activation/drug effects , Mice , Receptors, Antigen, T-Cell/immunology , Tetradecanoylphorbol Acetate/pharmacology , Type C Phospholipases/metabolism
10.
J Biol Chem ; 262(6): 2719-28, 1987 Feb 25.
Article in English | MEDLINE | ID: mdl-3029093

ABSTRACT

The murine T lymphoma line, LBRM-33 1A5, requires synergistic signals delivered by phytohemagglutinin (PHA) and interleukin 1 (IL1) for activation to high level interleukin 2 production. The activation signals provided by PHA and IL1 were replaced by the Ca2+ ionophore, ionomycin, and the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), respectively. These observations supported a two-signal model for T cell activation involving increases in intracellular Ca2+ concentration ([Ca2+]i) (signal 1) and activation of protein kinase C (signal 2) as necessary and sufficient events. However, biochemical analyses revealed that additional signals were involved in the activation of LBRM-33 cells by both receptor-dependent and -independent mediators. Both signal 1-type mediators, PHA and ionomycin, exerted pleiotropic effects at the concentrations required for synergy with signal 2-type mediators (IL1, TPA). Within 1-2 min of addition, PHA stimulated phospholipid turnover, including hydrolysis of phosphatidylinositol 4,5-bisphosphate, Ca2+ mobilization, and protein kinase C activation. The [Ca2+]i increase induced by PHA was due to influx from both intracellular and extracellular Ca2+ pools. Similarly, ionomycin increased phospholipid turnover, [Ca2+]i, and directly affected protein kinase C activity in LBRM-33 cells. In contrast, the signal 2-type mediators, TPA and IL1, appeared to act by distinct intracellular mechanisms. TPA induced a protracted association of cellular protein kinase C with the plasma membrane, consistent with the two-signal activation model. Furthermore, acute TPA treatment inhibited PHA-stimulated inositol phosphate release and Ca2+ mobilization, suggesting that this mediator partially antagonized signal 1 delivery. IL1, in contrast, neither activated protein kinase C directly nor did it positively modulate the coupling of signal 1-type mediators to [Ca2+]i or protein kinase C via the phosphoinositide pathway. The intracellular signal delivered by IL1 is, therefore, generated through a mechanism distinct from or distal to the activation of protein kinase C. These studies indicate that the two-signal hypothesis, in its simplest form, is inadequate to explain the signals required for the initiation of IL1-dependent T cell activation.


Subject(s)
Interleukin-1/pharmacology , Phosphatidylinositols/metabolism , T-Lymphocytes/drug effects , Animals , Calcium/metabolism , Cell Line , Ethers/pharmacology , Inositol Phosphates/metabolism , Interleukin-2/metabolism , Ionomycin , Lymphocyte Activation , Lymphoma/metabolism , Mice , Models, Biological , Protein Kinase C/metabolism , Tetradecanoylphorbol Acetate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...