Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 26(18): 4455-4461, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27524313

ABSTRACT

Modification of the δ-sultam ring of RORc inverse agonist 2 led to the discovery of more polar oxa-sultam 65. The less lipophilic inverse agonist (65) displayed high potency in a biochemical assay, which translated into inhibition of IL-17 production in human peripheral blood mononuclear cells. The successful reduction of lipophilicity of this new analog gave rise to additional improvements in ROR selectivity and aqueous kinetic solubility, as well as reduction in plasma protein binding, while maintaining high cellular permeability.


Subject(s)
Lipids/chemistry , Nuclear Receptor Subfamily 1, Group F, Member 1/agonists , Drug Discovery , Drug Inverse Agonism , Naphthalenesulfonates/chemistry
2.
Bioorg Med Chem Lett ; 25(15): 2907-12, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26048793

ABSTRACT

The nuclear receptor (NR) retinoic acid receptor-related orphan receptor gamma (RORγ, RORc, or NR1F3) is a promising target for the treatment of autoimmune diseases. RORc is a critical regulator in the production of the pro-inflammatory cytokine interleukin-17. We discovered a series of potent and selective imidazo[1,5-a]pyridine and -pyrimidine RORc inverse agonists. The most potent compounds displayed >300-fold selectivity for RORc over the other ROR family members, PPARγ, and NRs in our cellular selectivity panel. The favorable potency, selectivity, and physiochemical properties of GNE-0946 (9) and GNE-6468 (28), in addition to their potent suppression of IL-17 production in human primary cells, support their use as chemical biology tools to further explore the role of RORc in human biology.


Subject(s)
Imidazoles/chemistry , Imidazoles/pharmacology , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Animals , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Cell Line , Cells, Cultured , Drug Discovery , HEK293 Cells , Humans , Imidazoles/metabolism , Imidazoles/pharmacokinetics , Interleukin-17/immunology , Liver/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Pyridines/metabolism , Pyridines/pharmacokinetics , Pyrimidines/metabolism , Pyrimidines/pharmacokinetics , Rats , Structure-Activity Relationship
3.
Cytometry A ; 73(4): 299-304, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18163465

ABSTRACT

Image-based screening, a new and flexible tool in the drug discovery cascade, is amenable to many different targets. This article describes a particular use of the Cellomics ArrayScan in developing a functional screen for histamine H(4) receptor (H(4)R) antagonists that have potential utility in inflammatory diseases of the airways such as asthma, with H(4)R being expressed on a wide variety of immune cells including eosinophils. Exposure to histamine causes eosinophils to migrate from the bloodstream into the tissue where they contribute to inflammation. Migration is manifested through rearrangements of the actin cytoskeleton and phalloidin, a biological peptide, selectively binds F-actin over G-actin and can be used to detect these cytoskeletal changes mediating inflammatory function. A fluorescent conjugate of phalloidin was used to visualize histamine-induced actin polymerization in human eosinophils on the Cellomics ArrayScan. Inhibition of this phenomenon by commercially available histamine receptor antagonists was measured. The selective H(4)R antagonist JNJ7777120 inhibited histamine-induced actin polymerization in eosinophils most potently. This assay illustrates that this phenomenon is mediated through the H(4)R and that the image-based format has enhanced screening utility for identifying selective H(4)R antagonists over traditional flow cytometry methods.


Subject(s)
Actins/chemistry , Eosinophils/metabolism , Flow Cytometry/methods , Histamine/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, Histamine/chemistry , Cytoskeleton/metabolism , Humans , Inflammation , Inhibitory Concentration 50 , Models, Biological , Phalloidine/chemistry , Polymers/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, Histamine/metabolism , Receptors, Histamine H4 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...