Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Cell ; 22(10): e13949, 2023 10.
Article in English | MEDLINE | ID: mdl-37559347

ABSTRACT

Autophagy is an intracellular degradative process with an important role in cellular homeostasis. Here, we show that the RNA binding protein (RBP), heterogeneous nuclear ribonucleoprotein Q (HNRNPQ)/SYNCRIP is required to stimulate early events in autophagosome biogenesis, in particular the induction of VPS34 kinase by ULK1-mediated beclin 1 phosphorylation. The RBPs HNRNPQ and poly(A) binding protein nuclear 1 (PABPN1) form a regulatory network that controls the turnover of distinct autophagy-related (ATG) proteins. We also show that oculopharyngeal muscular dystrophy (OPMD) mutations engender a switch from autophagosome stimulation to autophagosome inhibition by impairing PABPN1 and HNRNPQ control of the level of ULK1. The overexpression of HNRNPQ in OPMD patient-derived cells rescues the defective autophagy in these cells. Our data reveal a regulatory mechanism of autophagy induction that is compromised by PABPN1 disease mutations, and may thus further contribute to their deleterious effects.


Subject(s)
Muscular Dystrophy, Oculopharyngeal , Humans , Muscular Dystrophy, Oculopharyngeal/genetics , Muscular Dystrophy, Oculopharyngeal/metabolism , Autophagosomes/metabolism , Mutation/genetics , Poly(A)-Binding Protein I/genetics , Poly(A)-Binding Protein I/metabolism
2.
Int J Mol Sci ; 21(6)2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32183375

ABSTRACT

Vascular abnormalities are the most important non-cystic complications in Polycystic Kidney Disease (PKD) and contribute to renal disease progression. Endothelial dysfunction and oxidative stress are evident in patients with ADPKD, preserved renal function, and controlled hypertension. The underlying biological mechanisms remain unknown. We hypothesized that in early ADPKD, the reactive oxygen species (ROS)-producing nicotinamide adenine dinucleotide phosphate hydrogen (NAD(P)H)-oxidase complex-4 (NOX4), a major source of ROS in renal tubular epithelial cells (TECs) and endothelial cells (ECs), induces EC mitochondrial abnormalities, contributing to endothelial dysfunction, vascular abnormalities, and renal disease progression. Renal oxidative stress, mitochondrial morphology (electron microscopy), and NOX4 expression were assessed in 4- and 12-week-old PCK and Sprague-Dawley (wild-type, WT) control rats (n = 8 males and 8 females each). Endothelial function was assessed by renal expression of endothelial nitric oxide synthase (eNOS). Peritubular capillaries were counted in hematoxylin-eosin (H&E)-stained slides and correlated with the cystic index. The enlarged cystic kidneys of PCK rats exhibited significant accumulation of 8-hydroxyguanosine (8-OHdG) as early as 4 weeks of age, which became more pronounced at 12 weeks. Mitochondria of TECs lining cysts and ECs exhibited loss of cristae but remained preserved in non-cystic TECs. Renal expression of NOX4 was upregulated in TECs and ECs of PCK rats at 4 weeks of age and further increased at 12 weeks. Contrarily, eNOS immunoreactivity was lower in PCK vs. WT rats at 4 weeks and further decreased at 12 weeks. The peritubular capillary index was lower in PCK vs. WT rats at 12 weeks and correlated inversely with the cystic index. Early PKD is associated with NOX4-induced oxidative stress and mitochondrial abnormalities predominantly in ECs and TECs lining cysts. Endothelial dysfunction precedes capillary loss, and the latter correlates with worsening of renal disease. These observations position NOX4 and EC mitochondria as potential therapeutic targets in PKD.


Subject(s)
Kidney/pathology , Mitochondria/pathology , NADPH Oxidase 4/metabolism , Nitric Oxide Synthase Type III/metabolism , Polycystic Kidney Diseases/pathology , Animals , Disease Progression , Endothelial Cells/metabolism , Epithelial Cells/metabolism , Female , Guanosine/analogs & derivatives , Guanosine/analysis , Male , Nitric Oxide Synthase Type III/biosynthesis , Oxidative Stress/physiology , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...