Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Bone Rep ; 17: 101603, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35874167

ABSTRACT

Loss-of-function mutations in SMAD3 cause Loeys-Dietz syndrome type 3 (LDS3), a rare autosomal-dominant connective tissue disorder characterized by vascular pathology and skeletal abnormalities. Dysregulation of TGF-ß/SMAD signaling is associated with abnormal skeletal features and bone fragility. To date, histomorphometric and ultrastructural characteristics of bone with SMAD3 mutations have not been reported in humans and the exact mechanism by which SMAD3 mutations cause the LDS3 phenotype is poorly understood. Here, we investigated bone histomorphometry and matrix mineralization in human bone with a SMAD3 mutation and explored the associated cellular defect in the TGF-ß/SMAD pathway in vitro. The index patient had recurrent fractures, mild facial dysmorphism, arachnodactyly, pectus excavatum, chest asymmetry and kyphoscoliosis. Bone histomorphometry revealed markedly reduced cortical thickness (-68 %), trabecular thickness (-32 %), bone formation rate (-50 %) and delayed mineralization. Quantitative backscattered electron imaging demonstrated undermineralized bone matrix with increased heterogeneity in mineralization. The patient's SMAD3 mutation (c.200 T > G; p.I67S), when expressed from plasmid vectors in HEK293 cells, showed reduced phosphorylation and transcription factor activity compared to normal control and SMAD3 (p.S264Y), a gain-of-function mutation, somatic mosaicism of which causes melorheostosis. Transfection study of the patients' SMAD3 (p.I67S) mutation displayed lower luciferase reporter activity than normal SMAD3 and reduced expression of TGF-ß signaling target genes. Patient fibroblasts also demonstrated impaired SMAD3 protein stability. Osteoclastogenic differentiation significantly increased and osteoclast-associated genes, including ACP5 (encoding TRAP), ATP6V0D2, and DCSTAMP, were up-regulated in CD14 (+) peripheral blood mononuclear cells (PBMCs) with the SMAD3 (p.I67S) mutation. Upregulation of osteoclastogenic genes was associated with decreased expression of TGF-ß signaling target genes. We conclude that bone with the SMAD3 (p.I67S) mutation features reduced bone formation, and our functional studies revealed decreased SMAD3 activation and protein stability as well as increased osteoclastogenesis. These findings enhance our understanding of the pathophysiology of LDS3 caused by SMAD3 mutations. Emerging therapies targeting in the TGF-ß/SMAD pathway also raise hope for treatment of LDS3.

2.
Dis Model Mech ; 15(5)2022 05 01.
Article in English | MEDLINE | ID: mdl-35575034

ABSTRACT

Osteogenesis imperfecta (OI) is a heterogeneous family of collagen type I-related diseases characterized by bone fragility. OI is most commonly caused by single-nucleotide substitutions that replace glycine residues or exon splicing defects in the COL1A1 and COL1A2 genes that encode the α1(I) and α2(I) collagen chains. Mutant collagen is partially retained intracellularly, impairing cell homeostasis. Upon secretion, it assembles in disorganized fibrils, altering mineralization. OI is characterized by a wide range of clinical outcomes, even in the presence of identical sequence variants. Given the heterotrimeric nature of collagen I, its amino acid composition and the peculiarity of its folding, several causes may underlie the phenotypic variability of OI. A deep analysis of entries regarding glycine and splice site collagen substitution of the largest publicly available patient database reveals a higher risk of lethal phenotype for carriers of variants in α1(I) than in α2(I) chain. However, splice site variants are predominantly associated with lethal phenotype when they occur in COL1A2. In addition, lethality is increased when mutations occur in regions of importance for extracellular matrix interactions. Both extracellular and intracellular determinants of OI clinical severity are discussed in light of the findings from in vitro and in vivo OI models. Combined with meticulous tracking of clinical cases via a publicly available database, the available OI animal models have proven to be a unique tool to shed light on new modulators of phenotype determination for this rare heterogeneous disease.


Subject(s)
Osteogenesis Imperfecta , Animals , Biological Variation, Population , Collagen/metabolism , Collagen Type I, alpha 1 Chain , Glycine/genetics , Humans , Mutation/genetics , Osteogenesis Imperfecta/genetics , Phenotype
3.
J Bone Miner Res ; 37(5): 925-937, 2022 05.
Article in English | MEDLINE | ID: mdl-35258129

ABSTRACT

Osteogenesis imperfecta (OI) is a heterogeneous genetic disorder of bone and connective tissue, also known as brittle bone disease. Null mutations in SERPINF1, which encodes pigment epithelium-derived factor (PEDF), cause severe type VI OI, characterized by accumulation of unmineralized osteoid and a fish-scale pattern of bone lamellae. Although the potent anti-angiogenic activity of PEDF has been extensively studied, the disease mechanism of type VI OI is not well understood. Using Serpinf1(-/-) mice and primary osteoblasts, we demonstrate that loss of PEDF delays osteoblast maturation as well as extracellular matrix (ECM) mineralization. Barium sulfate perfusion reveals significantly increased vessel density in the tibial periosteum of Serpinf1(-/-) mouse compared with wild-type littermates. The increased bone vascularization in Serpinf1(-/-) mice correlated with increased number of CD31(+)/Endomucin(+) endothelial cells, which are involved in the coupling angiogenesis and osteogenesis. Global transcriptome analysis by RNA-Seq of Serpinf1(-/-) mouse osteoblasts reveals osteogenesis and angiogenesis as the biological processes most impacted by loss of PEDF. Intriguingly, TGF-ß signaling is activated in type VI OI cells, and Serpinf1(-/-) osteoblasts are more sensitive to TGF-ß stimulation than wild-type osteoblasts. TGF-ß stimulation and PEDF deficiency showed additive effects on transcription suppression of osteogenic markers and stimulation of pro-angiogenic factors. Furthermore, PEDF attenuated TGF-ß-induced expression of pro-angiogenic factors. These data suggest that functional antagonism between PEDF and TGF-ß pathways controls osteogenesis and bone vascularization and is implicated in type VI OI pathogenesis. This antagonism may be exploited in developing therapeutics for type VI OI utilizing PEDF and TGF-ß antibody. © 2022 American Society for Bone and Mineral Research (ASBMR). This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Eye Proteins , Nerve Growth Factors , Osteogenesis Imperfecta , Serpins , Transforming Growth Factor beta , Animals , Endothelial Cells , Eye Proteins/genetics , Eye Proteins/metabolism , Mice , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/metabolism , Serpins/genetics , Serpins/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
4.
Matrix Biol ; 90: 20-39, 2020 08.
Article in English | MEDLINE | ID: mdl-32112888

ABSTRACT

Null mutations in CRTAP or P3H1, encoding cartilage-associated protein and prolyl 3-hydroxylase 1, cause the severe bone dysplasias, types VII and VIII osteogenesis imperfecta. Lack of either protein prevents formation of the ER prolyl 3-hydroxylation complex, which catalyzes 3Hyp modification of types I and II collagen and also acts as a collagen chaperone. To clarify the role of the A1 3Hyp substrate site in recessive bone dysplasia, we generated knock-in mice with an α1(I)P986A substitution that cannot be 3-hydroxylated. Mutant mice have normal survival, growth, femoral breaking strength and mean bone mineralization. However, the bone collagen HP/LP crosslink ratio is nearly doubled in mutant mice, while collagen fibril diameter and bone yield energy are decreased. Thus, 3-hydroxylation of the A1 site α1(I)P986 affects collagen crosslinking and structural organization, but its absence does not directly cause recessive bone dysplasia. Our study suggests that the functions of the modification complex as a collagen chaperone are thus distinct from its role as prolyl 3-hydroxylase.


Subject(s)
Amino Acid Substitution , Collagen Type I/genetics , Osteoblasts/cytology , Osteogenesis Imperfecta/genetics , Animals , Cells, Cultured , Collagen Type I, alpha 1 Chain , Disease Models, Animal , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Knock-In Techniques , Humans , Hydroxylation , Male , Mice , Osteoblasts/metabolism , Osteogenesis Imperfecta/metabolism , Phenotype
5.
Bone ; 130: 115047, 2020 01.
Article in English | MEDLINE | ID: mdl-31472299

ABSTRACT

Bruck syndrome (BRKS) is the rare disorder that features congenital joint contractures often with pterygia and subsequent fractures, also known as osteogenesis imperfecta (OI) type XI (OMIM # 610968). Its two forms, BRKS1 (OMIM # 259450) and BRKS2 (OMIM # 609220), reflect autosomal recessive (AR) inheritance of FKBP10 and PLOD2 loss-of-function mutations, respectively. A 10-year-old girl was referred with blue sclera, osteopenia, poorly-healing fragility fractures, Wormian skull bones, cleft soft palate, congenital fusion of cervical vertebrae, progressive scoliosis, bell-shaped thorax, restrictive and reactive pulmonary disease, protrusio acetabuli, short stature, and additional dysmorphic features without joint contractures. Iliac crest biopsy after alendronate treatment that improved her bone density revealed low trabecular connectivity, abundant patchy osteoid, and active bone formation with widely-spaced tetracycline labels. Chromosome 22q11 deletion analysis for velocardiofacial syndrome, COL1A1 and COL1A2 sequencing for prevalent types of OI, and Sanger sequencing of LRP5, PPIB, FKBP10, and IFITM5 for rare pediatric osteoporoses were negative. Copy number microarray excluded a contiguous gene syndrome. Instead, exome sequencing revealed two missense variants in PLOD2 which encodes procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (lysyl hydroxylase 2, LH2); exon 8, c.797G>T, p.Gly266Val (paternal), and exon 12, c.1280A>G, p.Asn427Ser (maternal). In the Exome Aggregation Consortium (ExAC) database, low frequency (Gly266Val, 0.0000419) and absence (Asn427Ser) implicated both variants as mutations of PLOD2. The father, mother, and sister (who carried the exon 12 defect) were reportedly well with normal parental DXA findings. BRKS2, characterized by under-hydroxylation of type I collagen telopeptides compromising their crosslinking, has been reported in at least 16 probands/families. Most PLOD2 mutations involve exons 17-19 (of 20 total) encoding the C-terminal domain with LH activity. However, truncating defects (nonsense, frameshift, splice site mutations) are also found throughout PLOD2. In three reports, AR PLOD2 mutations are not associated with congenital contractures. Our patient's missense defects lie within the central domain of unknown function of PLOD2. In our patient, compound heterozygosity with PLOD2 mutations is associated with a clinical phenotype distinctive from classic BRKS2 indicating that when COL1A1 and COL1A2 mutation testing is negative for OI without congenital contractures or pterygia, atypical BRKS should be considered.


Subject(s)
Arthrogryposis , Contracture , Osteogenesis Imperfecta , Arthrogryposis/genetics , Child , Collagen Type I , Contracture/genetics , Female , Humans , Mutation/genetics , Osteogenesis Imperfecta/genetics , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics
6.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2210-2223, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31055083

ABSTRACT

Mutations in the type I procollagen C-propeptide occur in ~6.5% of Osteogenesis Imperfecta (OI) patients. They are of special interest because this region of procollagen is involved in α chain selection and folding, but is processed prior to fibril assembly and is absent in mature collagen fibrils in tissue. We investigated the consequences of seven COL1A1 C-propeptide mutations for collagen biochemistry in comparison to three probands with classical glycine substitutions in the collagen helix near the C-propeptide and a normal control. Procollagens with C-propeptide defects showed the expected delayed chain incorporation, slow folding and overmodification. Immunofluorescence microscopy indicated that procollagen with C-propeptide defects was mislocalized to the ER lumen, in contrast to the ER membrane localization of normal procollagen and procollagen with helical substitutions. Notably, pericellular processing of procollagen with C-propeptide mutations was defective, with accumulation of pC-collagen and/or reduced production of mature collagen. In vitro cleavage assays with BMP-1 ±â€¯PCPE-1 confirmed impaired C-propeptide processing of procollagens containing mutant proα1(I) chains. Overmodified collagens were incorporated into the matrix in culture. Dermal fibrils showed alterations in average diameter and diameter variability and bone fibrils were disorganized. Altered ER-localization and reduced pericellular processing of defective C-propeptides are expected to contribute to abnormal osteoblast differentiation and matrix function, respectively.


Subject(s)
Collagen Type I/genetics , Endoplasmic Reticulum/metabolism , Procollagen/metabolism , Calorimetry, Differential Scanning , Cells, Cultured , Collagen Type I/chemistry , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Microscopy, Fluorescence , Mutation, Missense , Osteogenesis Imperfecta/metabolism , Osteogenesis Imperfecta/pathology , Protein Structure, Tertiary
7.
Hum Mol Genet ; 26(12): 2207-2217, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28419360

ABSTRACT

Collagen prolyl 4-hydroxylases (C-P4Hs) play a central role in the formation and stabilization of the triple helical domain of collagens. P4HA1 encodes the catalytic α(I) subunit of the main C-P4H isoenzyme (C-P4H-I). We now report human bi-allelic P4HA1 mutations in a family with a congenital-onset disorder of connective tissue, manifesting as early-onset joint hypermobility, joint contractures, muscle weakness and bone dysplasia as well as high myopia, with evidence of clinical improvement of motor function over time in the surviving patient. Similar to P4ha1 null mice, which die prenatally, the muscle tissue from P1 and P2 was found to have reduced collagen IV immunoreactivity at the muscle basement membrane. Patients were compound heterozygous for frameshift and splice site mutations leading to reduced, but not absent, P4HA1 protein level and C-P4H activity in dermal fibroblasts compared to age-matched control samples. Differential scanning calorimetry revealed reduced thermal stability of collagen in patient-derived dermal fibroblasts versus age-matched control samples. Mutations affecting the family of C-P4Hs, and in particular C-P4H-I, should be considered in patients presenting with congenital connective tissue/myopathy overlap disorders with joint hypermobility, contractures, mild skeletal dysplasia and high myopia.


Subject(s)
Procollagen-Proline Dioxygenase/genetics , Procollagen-Proline Dioxygenase/metabolism , Prolyl Hydroxylases/genetics , Animals , Basement Membrane/metabolism , Bone and Bones/metabolism , Child , Collagen Type IV/genetics , Connective Tissue , Humans , Male , Mice , Mice, Knockout , Muscles/metabolism , Mutation , Osteochondrodysplasias/genetics , Prolyl Hydroxylases/metabolism , Tendons/metabolism
8.
PLoS Genet ; 12(7): e1006156, 2016 07.
Article in English | MEDLINE | ID: mdl-27441836

ABSTRACT

Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50-70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes.


Subject(s)
Calcium/metabolism , Collagen Type I/biosynthesis , Ion Channels/genetics , Osteogenesis Imperfecta/genetics , Adult , Calcium Signaling , Collagen Type I/metabolism , Consanguinity , DNA Mutational Analysis , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Female , Genes, Recessive , Genetic Association Studies , Genetic Predisposition to Disease , Homeostasis , Humans , Infant , Male , Pedigree , Protein Processing, Post-Translational
9.
J Clin Endocrinol Metab ; 101(9): 3516-25, 2016 09.
Article in English | MEDLINE | ID: mdl-27383115

ABSTRACT

CONTEXT: Type VIII osteogenesis imperfecta (OI; OMIM 601915) is a recessive form of lethal or severe OI caused by null mutations in P3H1, which encodes prolyl 3-hydroxylase 1. OBJECTIVES: Clinical and bone material description of non-lethal type VIII OI. DESIGN: Natural history study of type VIII OI. SETTING: Pediatric academic research centers. PATIENTS: Five patients with non-lethal type VIII OI, and one patient with lethal type VIII OI. INTERVENTIONS: None. MAIN OUTCOME MEASURES: Clinical examinations included bone mineral density, radiographs, and serum and urinary metabolites. Bone biopsy samples were analyzed for histomorphometry and bone mineral density distribution by quantitative backscattered electron imaging microscopy. Collagen biochemistry was examined by mass spectrometry, and collagen fibrils were examined by transmission electron microscopy. RESULTS: Type VIII OI patients have extreme growth deficiency, an L1-L4 areal bone mineral density Z-score of -5 to -6, and normal bone formation markers. Collagen from bone and skin tissue and cultured osteoblasts and fibroblasts have nearly absent 3-hydroxylation (1-4%). Collagen fibrils showed abnormal diameters and irregular borders. Bone histomorphometry revealed decreased cortical width and very thin trabeculae with patches of increased osteoid, although the overall osteoid surface was normal. Quantitative backscattered electron imaging showed increased matrix mineralization of cortical and trabecular bone, typical of other OI types. However, the proportion of bone with low mineralization was increased in type VIII OI bone, compared to type VII OI. CONCLUSIONS: P3H1 is the unique enzyme responsible for collagen 3-hydroxylation in skin and bone. Bone from non-lethal type VIII OI children is similar to type VII, especially bone matrix hypermineralization, but it has distinctive features including extremely thin trabeculae, focal osteoid accumulation, and an increased proportion of low mineralized bone.


Subject(s)
Bone Density , Bone Matrix/pathology , Calcification, Physiologic , Membrane Glycoproteins/genetics , Osteogenesis Imperfecta/physiopathology , Proteoglycans/genetics , Adolescent , Adult , Bone Matrix/metabolism , Cells, Cultured , Child , Child, Preschool , Collagen/metabolism , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Infant , Infant, Newborn , Male , Mutation/genetics , Prognosis , Prolyl Hydroxylases , Young Adult
10.
Nat Commun ; 7: 11920, 2016 07 06.
Article in English | MEDLINE | ID: mdl-27380894

ABSTRACT

Osteogenesis imperfecta (OI) is a collagen-related bone dysplasia. We identified an X-linked recessive form of OI caused by defects in MBTPS2, which encodes site-2 metalloprotease (S2P). MBTPS2 missense mutations in two independent kindreds with moderate/severe OI cause substitutions at highly conserved S2P residues. Mutant S2P has normal stability, but impaired functioning in regulated intramembrane proteolysis (RIP) of OASIS, ATF6 and SREBP transcription factors, consistent with decreased proband secretion of type I collagen. Further, hydroxylation of the collagen lysine residue (K87) critical for crosslinking is reduced in proband bone tissue, consistent with decreased lysyl hydroxylase 1 in proband osteoblasts. Reduced collagen crosslinks presumptively undermine bone strength. Also, proband osteoblasts have broadly defective differentiation. These mutations provide evidence that RIP plays a fundamental role in normal bone development.


Subject(s)
Cell Membrane/pathology , Collagen Type I/genetics , Metalloendopeptidases/genetics , Mutation, Missense , Osteoblasts/metabolism , Osteogenesis Imperfecta/genetics , Activating Transcription Factor 6/genetics , Activating Transcription Factor 6/metabolism , Adult , Aged , Cell Differentiation , Cell Membrane/metabolism , Collagen Type I/deficiency , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Gene Expression Regulation , Genes, Recessive , Humans , Hydroxylation , Male , Metalloendopeptidases/metabolism , Middle Aged , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Osteoblasts/pathology , Osteogenesis Imperfecta/metabolism , Osteogenesis Imperfecta/pathology , Pedigree , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/metabolism , Proteolysis , Severity of Illness Index , Sterol Regulatory Element Binding Proteins/genetics , Sterol Regulatory Element Binding Proteins/metabolism
11.
Bone ; 87: 120-9, 2016 06.
Article in English | MEDLINE | ID: mdl-27083399

ABSTRACT

The Col1a2(+/G610C) knock-in mouse, models osteogenesis imperfecta in a large old order Amish family (OOA) with type IV OI, caused by a G-to-T transversion at nucleotide 2098, which alters the gly-610 codon in the triple-helical domain of the α2(I) chain of type I collagen. Mineral and matrix properties of the long bones and vertebrae of male Col1a2(+/G610C) and their wild-type controls (Col1a2(+/+)), were characterized to gain insight into the role of α2-chain collagen mutations in mineralization. Additionally, we examined the rescuability of the composition by sclerostin inhibition initiated by crossing Col1a2(+/G610C) with an LRP(+/A214V) high bone mass allele. At age 10-days, vertebrae and tibia showed few alterations by micro-CT or Fourier transform infrared imaging (FTIRI). At 2-months-of-age, Col1a2(+/G610C) tibias had 13% fewer secondary trabeculae than Col1a2(+/+), these were thinner (11%) and more widely spaced (20%) than those of Col1a2(+/+) mice. Vertebrae of Col1a2(+/G610C) mice at 2-months also had lower bone volume fraction (38%), trabecular number (13%), thickness (13%) and connectivity density (32%) compared to Col1(a2+/+). The cortical bone of Col1a2(+/G610C) tibias at 2-months had 3% higher tissue mineral density compared to Col1a2(+/+); Col1a2(+/G610C) vertebrae had lower cortical thickness (29%), bone area (37%) and polar moment of inertia (38%) relative to Col1a2(+/+). FTIRI analysis, which provides information on bone chemical composition at ~7µm-spatial resolution, showed tibias at 10-days did not differ between genotypes. Comparing identical bone types in Col1a2(+/G610C) to Col1a2(+/+) at 2-months-of-age, tibias showed higher mineral-to-matrix ratio in trabeculae (17%) and cortices (31%). and in vertebral cortices (28%). Collagen maturity was 42% higher at 10-days-of-age in Col1a2(+/G610C) vertebral trabeculae and in 2-month tibial cortices (12%), vertebral trabeculae (42%) and vertebral cortices (12%). Higher acid-phosphate substitution was noted in 10-day-old trabecular bone in vertebrae (31%) and in 2-month old trabecular bone in both tibia (31%) and vertebrae (4%). There was also a 16% lower carbonate-to-phosphate ratio in vertebral trabeculae and a correspondingly higher (22%) carbonate-to-phosphate ratio in 2month-old vertebral cortices. At age 3-months-of-age, male femurs with both a Col1a2(+/G610C) allele and a Lrp5 high bone mass allele (Lrp5+/A214V) showed an improvement in bone composition, presenting higher trabecular carbonate-to-phosphate ratio (18%) and lower trabecular and cortical acid-phosphate substitutions (8% and 18%, respectively). Together, these results indicate that mutant collagen α2(I) chain affects both bone quantity and composition, and the usefulness of this model for studies of potential OI therapies such as anti-sclerostin treatments.


Subject(s)
Bone Density , Collagen Type I/metabolism , Osteogenesis Imperfecta/physiopathology , Animals , Body Composition , Cancellous Bone/diagnostic imaging , Cancellous Bone/pathology , Cortical Bone/diagnostic imaging , Cortical Bone/pathology , Disease Models, Animal , Genotype , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Male , Mice , Osteogenesis Imperfecta/diagnostic imaging , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/pathology , Signal Transduction , Spectroscopy, Fourier Transform Infrared , X-Ray Microtomography
12.
Am J Hum Genet ; 97(4): 521-34, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26365339

ABSTRACT

The evolutionarily conserved transmembrane anterior posterior transformation 1 protein, encoded by TAPT1, is involved in murine axial skeletal patterning, but its cellular function remains unknown. Our study demonstrates that TAPT1 mutations underlie a complex congenital syndrome, showing clinical overlap between lethal skeletal dysplasias and ciliopathies. This syndrome is characterized by fetal lethality, severe hypomineralization of the entire skeleton and intra-uterine fractures, and multiple congenital developmental anomalies affecting the brain, lungs, and kidneys. We establish that wild-type TAPT1 localizes to the centrosome and/or ciliary basal body, whereas defective TAPT1 mislocalizes to the cytoplasm and disrupts Golgi morphology and trafficking and normal primary cilium formation. Knockdown of tapt1b in zebrafish induces severe craniofacial cartilage malformations and delayed ossification, which is shown to be associated with aberrant differentiation of cranial neural crest cells.


Subject(s)
Cilia/genetics , Ciliary Motility Disorders/genetics , Craniofacial Abnormalities/genetics , Membrane Proteins/genetics , Mutation/genetics , Ossification, Heterotopic/genetics , Osteochondrodysplasias/genetics , Amino Acid Sequence , Animals , Body Patterning , Cell Differentiation , Cell Movement , Cilia/metabolism , Cilia/pathology , Embryo, Nonmammalian/abnormalities , Female , Gene Expression Regulation, Developmental , Humans , In Situ Hybridization , Male , Membrane Proteins/metabolism , Molecular Sequence Data , Neural Crest/cytology , Neural Crest/metabolism , Pedigree , Protein Transport , Sequence Homology, Amino Acid , Signal Transduction , Zebrafish/embryology , Zebrafish/genetics
13.
J Clin Endocrinol Metab ; 100(2): E325-32, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25387264

ABSTRACT

CONTEXT: Patients with type V osteogenesis imperfecta (OI) are heterozygous for a dominant IFITM5 c.-14C>T mutation, which adds five residues to the N terminus of bone-restricted interferon-induced transmembrane-like protein (BRIL), a transmembrane protein expressed in osteoblasts. Type V OI skeletal findings include hyperplastic callus formation, ossification of the forearm interosseous membrane, and dense metaphyseal bands. OBJECTIVE: The objective of this study was to examine the role of osteoblasts in the active mineralization traits of type V OI and the effect of the IFITM5 mutation on type I collagen. METHODS: We identified eight patients with the IFITM5 c.-14C>T mutation. Cultured osteoblasts from type V OI patients were used to study osteoblast differentiation and mineralization. RESULTS: We verified the expression and stability of mutant IFITM5 transcripts. In differentiated type V OI primary osteoblasts in culture, the IFITM5 expression and BRIL level is comparable with control. Both early and late markers of osteoblast differentiation are increased in type V OI osteoblasts. Mineralization, assayed by alizarin red staining, was increased in type V OI osteoblasts compared with control. However, type V OI osteoblasts have significantly decreased COL1A1 transcripts in mid- to late differentiation. Type I collagen protein is concomitantly decreased, with decreased cross-linked collagen in matrix and altered appearance of fibrils deposited in culture. CONCLUSIONS: This study demonstrates that type V OI mineralization has a gain-of-function mechanism at the osteoblast level, which likely underlies the overactive tissue mineralization seen in patients. Decreased type I collagen expression, secretion, and matrix incorporation establish type V OI as a collagen-related defect.


Subject(s)
Calcinosis/pathology , Collagen Type I/genetics , Membrane Proteins/genetics , Osteoblasts/pathology , Osteogenesis Imperfecta/pathology , Adult , Aged , Calcinosis/genetics , Calcinosis/metabolism , Child, Preschool , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Female , Humans , Male , Membrane Proteins/metabolism , Middle Aged , Mutation , Osteoblasts/metabolism , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/metabolism , Young Adult
14.
J Bone Miner Res ; 29(6): 1402-11, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24519609

ABSTRACT

Osteogenesis imperfecta (OI) types V and VI are caused, respectively, by a unique dominant mutation in IFITM5, encoding BRIL, a transmembrane ifitm-like protein most strongly expressed in the skeletal system, and recessive null mutations in SERPINF1, encoding pigment epithelium-derived factor (PEDF). We identified a 25-year-old woman with severe OI whose dermal fibroblasts and cultured osteoblasts displayed minimal secretion of PEDF, but whose serum PEDF level was in the normal range. SERPINF1 sequences were normal despite bone histomorphometry consistent with type VI OI and elevated childhood serum alkaline phosphatase. We performed exome sequencing on the proband, both parents, and an unaffected sibling. IFITM5 emerged as the candidate gene from bioinformatics analysis, and was corroborated by membership in a murine bone co-expression network module containing all currently known OI genes. The de novo IFITM5 mutation was confirmed in one allele of the proband, resulting in a p.S40L substitution in the intracellular domain of BRIL but was absent in unaffected family members. IFITM5 expression was normal in proband fibroblasts and osteoblasts, and BRIL protein level was similar to control in differentiated proband osteoblasts on Western blot and in permeabilized mutant osteoblasts by microscopy. In contrast, SERPINF1 expression was decreased in proband osteoblasts; PEDF was barely detectable in conditioned media of proband cells. Expression and secretion of type I collagen was similarly decreased in proband osteoblasts; the expression pattern of several osteoblast markers largely overlapped reported values from cells with a primary PEDF defect. In contrast, osteoblasts from a typical case of type V OI, with an activating mutation at the 5'-terminus of BRIL, have increased SERPINF1 expression and PEDF secretion during osteoblast differentiation. Together, these data suggest that BRIL and PEDF have a relationship that connects the genes for types V and VI OI and their roles in bone mineralization.


Subject(s)
Eye Proteins/biosynthesis , Membrane Proteins/genetics , Mutation/genetics , Nerve Growth Factors/biosynthesis , Osteoblasts/metabolism , Osteogenesis Imperfecta/genetics , Serpins/biosynthesis , Adult , Alkaline Phosphatase/metabolism , Amino Acid Sequence , Base Sequence , Cell Differentiation/genetics , Child , Child, Preschool , Collagen Type I/metabolism , DNA, Complementary/genetics , Exome/genetics , Eye Proteins/metabolism , Female , Gene Regulatory Networks , Humans , Membrane Proteins/chemistry , Molecular Sequence Data , Nerve Growth Factors/metabolism , Osteocalcin/metabolism , Osteogenesis Imperfecta/diagnostic imaging , Protein Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , Radiography , Reproducibility of Results , Sequence Analysis, DNA , Serpins/metabolism , Young Adult
15.
Hum Mutat ; 34(9): 1279-88, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23712425

ABSTRACT

Recessive mutations in FKBP10 at 17q21.2, encoding FKBP65, cause both osteogenesis imperfecta (OI) and Bruck syndrome (OI plus congenital contractures). Contractures are a variable manifestation of null/missense FKBP10 mutations. Kuskokwim syndrome (KS) is an autosomal recessive congenital contracture disorder found among Yup'ik Eskimos. Linkage mapping of KS to chromosome 17q21, together with contractures as a feature of FKBP10 mutations, made FKBP10 a candidate gene. We identified a homozygous three-nucleotide deletion in FKBP10 (c.877_879delTAC) in multiple Kuskokwim pedigrees; 3% of regional controls are carriers. The mutation deletes the highly conserved p.Tyr293 residue in FKBP65's third peptidyl-prolyl cis-trans isomerase domain. FKBP10 transcripts are normal, but mutant FKBP65 is destabilized to a residual 5%. Collagen synthesized by KS fibroblasts has substantially decreased hydroxylation of the telopeptide lysine crucial for collagen cross-linking, with 2%-10% hydroxylation in probands versus 60% in controls. Matrix deposited by KS fibroblasts has marked reduction in maturely cross-linked collagen. KS collagen is disorganized in matrix, and fibrils formed in vitro had subtle loosening of monomer packing. Our results imply that FKBP10 mutations affect collagen indirectly, by ablating FKBP65 support for collagen telopeptide hydroxylation by lysyl hydroxylase 2, thus decreasing collagen cross-links in tendon and bone matrix. FKBP10 mutations may also underlie other arthrogryposis syndromes.


Subject(s)
Arthrogryposis/genetics , Contracture/congenital , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Adult , Chromosomes, Human, Pair 17 , Collagen/metabolism , Female , Fibroblasts/metabolism , Genes, Recessive , Genetic Linkage , Homozygote , Humans , Male , Middle Aged , Mutation, Missense , Pedigree , Phylogeny , Sequence Analysis, DNA
16.
Am J Hum Genet ; 92(4): 565-74, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23499309

ABSTRACT

We report that hypofunctional alleles of WNT1 cause autosomal-recessive osteogenesis imperfecta, a congenital disorder characterized by reduced bone mass and recurrent fractures. In consanguineous families, we identified five homozygous mutations in WNT1: one frameshift mutation, two missense mutations, one splice-site mutation, and one nonsense mutation. In addition, in a family affected by dominantly inherited early-onset osteoporosis, a heterozygous WNT1 missense mutation was identified in affected individuals. Initial functional analysis revealed that altered WNT1 proteins fail to activate canonical LRP5-mediated WNT-regulated ß-catenin signaling. Furthermore, osteoblasts cultured in vitro showed enhanced Wnt1 expression with advancing differentiation, indicating a role of WNT1 in osteoblast function and bone development. Our finding that homozygous and heterozygous variants in WNT1 predispose to low-bone-mass phenotypes might advance the development of more effective therapeutic strategies for congenital forms of bone fragility, as well as for common forms of age-related osteoporosis.


Subject(s)
Bone Density/genetics , Bone and Bones/pathology , Mutation/genetics , Osteogenesis Imperfecta/genetics , Osteoporosis/genetics , Wnt1 Protein/genetics , Animals , Base Sequence , Cells, Cultured , Child , Child, Preschool , Female , Heterozygote , Humans , Infant, Newborn , LDL-Receptor Related Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Osteoblasts/metabolism , Osteoblasts/pathology , Osteogenesis Imperfecta/pathology , Osteoporosis/pathology , Pedigree , Phenotype , Pregnancy
17.
Hum Mutat ; 33(11): 1589-98, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22718341

ABSTRACT

Recessive osteogenesis imperfecta (OI) is caused by defects in genes whose products interact with type I collagen for modification and/or folding. We identified a Palestinian pedigree with moderate and lethal forms of recessive OI caused by mutations in FKBP10 or PPIB, which encode endoplasmic reticulum resident chaperone/isomerases FKBP65 and CyPB, respectively. In one pedigree branch, both parents carry a deletion in PPIB (c.563_566delACAG), causing lethal type IX OI in their two children. In another branch, a child with moderate type XI OI has a homozygous FKBP10 mutation (c.1271_1272delCCinsA). Proband FKBP10 transcripts are 4% of control and FKBP65 protein is absent from proband cells. Proband collagen electrophoresis reveals slight band broadening, compatible with ≈10% over-modification. Normal chain incorporation, helix folding, and collagen T(m) support a minimal general collagen chaperone role for FKBP65. However, there is a dramatic decrease in collagen deposited in culture despite normal collagen secretion. Mass spectrometry reveals absence of hydroxylation of the collagen telopeptide lysine involved in cross-linking, suggesting that FKBP65 is required for lysyl hydroxylase activity or access to type I collagen telopeptide lysines, perhaps through its function as a peptidylprolyl isomerase. Proband collagen to organics ratio in matrix is approximately 30% of normal in Raman spectra. Immunofluorescence shows sparse, disorganized collagen fibrils in proband matrix.


Subject(s)
Collagen/metabolism , Mutation , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/metabolism , Tacrolimus Binding Proteins/deficiency , Tacrolimus Binding Proteins/genetics , Base Sequence , Child , Collagen/chemistry , Consanguinity , Cyclophilins/deficiency , Cyclophilins/genetics , DNA Mutational Analysis , Extracellular Matrix/metabolism , Female , Genes, Recessive , Humans , Infant, Newborn , Male , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Osteogenesis Imperfecta/classification , Osteogenesis Imperfecta/diagnostic imaging , Pakistan , Pedigree , Radiography
18.
PLoS One ; 7(5): e36809, 2012.
Article in English | MEDLINE | ID: mdl-22615817

ABSTRACT

Prolyl 3-hydroxylase 1 (P3H1), encoded by the LEPRE1 gene, forms a molecular complex with cartilage-associated protein (CRTAP) and cyclophilin B (encoded by PPIB) in the endoplasmic reticulum (ER). This complex is responsible for one step in collagen post-translational modification, the prolyl 3-hydroxylation of specific proline residues, specifically α1(I) Pro986. P3H1 provides the enzymatic activity of the complex and has a Lys-Asp-Glu-Leu (KDEL) ER-retrieval sequence at the carboxyl terminus. Loss of function mutations in LEPRE1 lead to the Pro986 residue remaining unmodified and lead to slow folding and excessive helical post-translational modification of type I collagen, which is seen in both dominant and recessive osteogenesis imperfecta (OI). Here, we present the case of siblings with non-lethal OI due to novel compound heterozygous mutations in LEPRE1 (c.484delG and c.2155dupC). The results of RNA analysis and real-time PCR suggest that mRNA with c.2155dupC escapes from nonsense-mediated RNA decay. Without the KDEL ER- retrieval sequence, the product of the c.2155dupC variant cannot be retained in the ER. This is the first report of a mutation in LEPRE1 that eliminates only the KDEL ER-retrieval sequence, whereas other functional domains remain intact. Our study shows, for the first time, that the KDEL ER- retrieval sequence is essential for P3H1 functionality and that a defect in KDEL is sufficient for disease onset.


Subject(s)
Membrane Glycoproteins/genetics , Mutation , Osteogenesis Imperfecta/genetics , Proteoglycans/genetics , Collagen Type I/metabolism , Humans , Prolyl Hydroxylases , Protein Processing, Post-Translational
19.
Genet Med ; 14(5): 543-51, 2012 May.
Article in English | MEDLINE | ID: mdl-22281939

ABSTRACT

PURPOSE: Deficiency of prolyl 3-hydroxylase 1, encoded by LEPRE1, causes recessive osteogenesis imperfecta (OI). We previously identified a LEPRE1 mutation exclusively in African Americans and contemporary West Africans. We hypothesized that this allele originated in West Africa and was introduced to the Americas with the Atlantic slave trade. We aimed to determine the frequency of carriers for this mutation among African Americans and West Africans, and the mutation origin and age. METHODS: Genomic DNA was screened for the mutation using PCR and restriction digestion, and a custom TaqMan genomic single-nucleotide polymorphism assay. The mutation age was estimated using microsatellites and short tandem repeats spanning 4.2 Mb surrounding LEPRE1 in probands and carriers. RESULTS: Approximately 0.4% (95% confidence interval: 0.22-0.68%) of Mid-Atlantic African Americans carry this mutation, estimating recessive OI in 1/260,000 births in this population. In Nigeria and Ghana, 1.48% (95% confidence interval: 0.95-2.30%) of unrelated individuals are heterozygous carriers, predicting that 1/18,260 births will be affected with recessive OI, equal to the incidence of de novo dominant OI. The mutation was not detected in Africans from surrounding countries. All carriers shared a haplotype of 63-770 Kb, consistent with a single founder for this mutation. Using linkage disequilibrium analysis, the mutation was estimated to have originated between 650 and 900 years before present (1100-1350 CE). CONCLUSION: We identified a West African founder mutation for recessive OI in LEPRE1. Nearly 1.5% of Ghanians and Nigerians are carriers. The estimated age of this allele is consistent with introduction to North America via the Atlantic slave trade (1501-1867 CE).


Subject(s)
Founder Effect , Heterozygote , Membrane Glycoproteins/genetics , Osteogenesis Imperfecta/genetics , Proteoglycans/genetics , Black or African American/genetics , Black People/genetics , Cohort Studies , DNA/blood , Genetic Carrier Screening , Genotyping Techniques , Ghana/epidemiology , Humans , Infant, Newborn , Linkage Disequilibrium/genetics , Mutation , Nigeria/epidemiology , North America/epidemiology , Osteogenesis Imperfecta/epidemiology , Prolyl Hydroxylases
20.
Nat Rev Endocrinol ; 7(9): 540-57, 2011 Jun 14.
Article in English | MEDLINE | ID: mdl-21670757

ABSTRACT

A new paradigm has emerged for osteogenesis imperfecta as a collagen-related disorder. The more prevalent autosomal dominant forms of osteogenesis imperfecta are caused by primary defects in type I collagen, whereas autosomal recessive forms are caused by deficiency of proteins which interact with type I procollagen for post-translational modification and/or folding. Factors that contribute to the mechanism of dominant osteogenesis imperfecta include intracellular stress, disruption of interactions between collagen and noncollagenous proteins, compromised matrix structure, abnormal cell-cell and cell-matrix interactions and tissue mineralization. Recessive osteogenesis imperfecta is caused by deficiency of any of the three components of the collagen prolyl 3-hydroxylation complex. Absence of 3-hydroxylation is associated with increased modification of the collagen helix, consistent with delayed collagen folding. Other causes of recessive osteogenesis imperfecta include deficiency of the collagen chaperones FKBP10 or Serpin H1. Murine models are crucial to uncovering the common pathways in dominant and recessive osteogenesis imperfecta bone dysplasia. Clinical management of osteogenesis imperfecta is multidisciplinary, encompassing substantial progress in physical rehabilitation and surgical procedures, management of hearing, dental and pulmonary abnormalities, as well as drugs, such as bisphosphonates and recombinant human growth hormone. Novel treatments using cell therapy or new drug regimens hold promise for the future.


Subject(s)
Osteogenesis Imperfecta/metabolism , Animals , Collagen Type I/chemistry , Collagen Type I/genetics , Collagen Type I/metabolism , Humans , Osteogenesis Imperfecta/drug therapy , Osteogenesis Imperfecta/etiology , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL
...