Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(9): 113088, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37682710

ABSTRACT

Cortical circuit function is regulated by extensively interconnected, diverse populations of GABAergic interneurons that may play key roles in shaping circuit operation according to behavioral context. A specialized population of interneurons that co-express vasoactive intestinal peptides (VIP-INs) are activated during arousal and innervate other INs and pyramidal neurons (PNs). Although state-dependent modulation of VIP-INs has been extensively studied, their role in regulating sensory processing is less well understood. We examined the impact of VIP-INs in the primary visual cortex of awake behaving mice. Loss of VIP-IN activity alters the behavioral state-dependent modulation of somatostatin-expressing INs (SST-INs) but not PNs. In contrast, reduced VIP-IN activity globally disrupts visual feature selectivity for stimulus size. Moreover, the impact of VIP-INs on perceptual behavior varies with context and is more acute for small than large visual cues. VIP-INs thus contribute to both state-dependent modulation of cortical activity and sensory context-dependent perceptual performance.


Subject(s)
Interneurons , Visual Perception , Mice , Animals , Interneurons/physiology , Pyramidal Cells/physiology
2.
EJNMMI Res ; 13(1): 55, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37273103

ABSTRACT

BACKGROUND: The lack of noninvasive methods for assessment of dysregulated inflammation as a major driver of fibrosis (i.e., inflammation-fibrosis axis) has been a major challenge to precision management of fibrotic lung diseases. Here, we determined the potential of very late antigen-4 (VLA-4)-targeted positron emission tomography (PET) to detect inflammation in a mouse model of bleomycin-induced fibrotic lung injury. METHOD: Single time-point and longitudinal VLA-4-targeted PET was performed using a high-affinity peptidomimetic radiotracer, 64Cu-LLP2A, at weeks 1, 2, and 4 after bleomycin-induced (2.5 units/kg) lung injury in C57BL/6J mice. The severity of fibrosis was determined by measuring the hydroxyproline content of the lungs and expression of markers of extracellular matrix remodeling. Flow cytometry and histology was performed to determine VLA-4 expression across different leukocyte subsets and their spatial distribution. RESULTS: Lung uptake of 64Cu-LLP2A was significantly elevated throughout different stages of the progression of bleomycin-induced injury. High lung uptake of 64Cu-LLP2A at week-1 post-bleomycin was a predictor of poor survival over the 4-week follow up, supporting the prognostic potential of 64Cu-LLP2A PET during the early stage of the disease. Additionally, the progressive increase in 64Cu-LLP2A uptake from week-1 to week-4 post-bleomycin correlated with the ultimate extent of lung fibrosis and ECM remodeling. Flow cytometry revealed that LLP2A binding was restricted to leukocytes. A combination of increased expression of VLA-4 by alveolar macrophages and accumulation of VLA-4-expressing interstitial and monocyte-derived macrophages as well as dendritic cells was noted in bleomycin-injured, compared to control, lungs. Histology confirmed the increased expression of VLA-4 in bleomycin-injured lungs, particularly in inflamed and fibrotic regions. CONCLUSIONS: VLA-4-targeted PET allows for assessment of the inflammation-fibrosis axis and prediction of disease progression in a murine model. The potential of 64Cu-LLP2A PET for assessment of the inflammation-fibrosis axis in human fibrotic lung diseases needs to be further investigated.

3.
bioRxiv ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37162871

ABSTRACT

Local cortical circuit function is regulated by diverse populations of GABAergic interneurons with distinct properties and extensive interconnectivity. Inhibitory-to-inhibitory interactions between interneuron populations may play key roles in shaping circuit operation according to behavioral context. A specialized population of GABAergic interneurons that co-express vasoactive intestinal peptide (VIP-INs) are activated during arousal and locomotion and innervate other local interneurons and pyramidal neurons. Although modulation of VIP-IN activity by behavioral state has been extensively studied, their role in regulating information processing and selectivity is less well understood. Using a combination of cellular imaging, short and long-term manipulation, and perceptual behavior, we examined the impact of VIP-INs on their synaptic target populations in the primary visual cortex of awake behaving mice. We find that loss of VIP-IN activity alters the behavioral state-dependent modulation of somatostatin-expressing interneurons (SST-INs) but not pyramidal neurons (PNs). In contrast, reduced VIP-IN activity disrupts visual feature selectivity for stimulus size in both populations. Inhibitory-to inhibitory interactions thus directly shape the selectivity of GABAergic interneurons for sensory stimuli. Moreover, the impact of VIP-IN activity on perceptual behavior varies with visual context and is more acute for small than large visual cues. VIP-INs thus contribute to both state-dependent modulation of cortical circuit activity and sensory context-dependent perceptual performance.

4.
Mol Psychiatry ; 28(7): 3133-3143, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37069344

ABSTRACT

GABAergic inhibition plays an important role in the establishment and maintenance of cortical circuits during development. Neuregulin 1 (Nrg1) and its interneuron-specific receptor ErbB4 are key elements of a signaling pathway critical for the maturation and proper synaptic connectivity of interneurons. Using conditional deletions of the ERBB4 gene in mice, we tested the role of this signaling pathway at two developmental timepoints in parvalbumin-expressing (PV) interneurons, the largest subpopulation of cortical GABAergic cells. Loss of ErbB4 in PV interneurons during embryonic, but not late postnatal development leads to alterations in the activity of excitatory and inhibitory cortical neurons, along with severe disruption of cortical temporal organization. These impairments emerge by the end of the second postnatal week, prior to the complete maturation of the PV interneurons themselves. Early loss of ErbB4 in PV interneurons also results in profound dysregulation of excitatory pyramidal neuron dendritic architecture and a redistribution of spine density at the apical dendritic tuft. In association with these deficits, excitatory cortical neurons exhibit normal tuning for sensory inputs, but a loss of state-dependent modulation of the gain of sensory responses. Together these data support a key role for early developmental Nrg1/ErbB4 signaling in PV interneurons as a powerful mechanism underlying the maturation of both the inhibitory and excitatory components of cortical circuits.


Subject(s)
Pyramidal Cells , Signal Transduction , Animals , Mice , Interneurons/metabolism , Neuregulin-1/metabolism , Neurons/metabolism , Parvalbumins/metabolism , Pyramidal Cells/metabolism , Receptor, ErbB-4/genetics
5.
Mol Imaging Biol ; 25(4): 681-691, 2023 08.
Article in English | MEDLINE | ID: mdl-36941514

ABSTRACT

PURPOSE: To image inflammation and monitor therapeutic response to anti-inflammatory intervention using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) in a preclinical model of acute lung injury (ALI). PROCEDURES: Mice were intratracheally administered lipopolysaccharide (LPS, 2.5 mg/kg) to induce ALI or phosphate-buffered saline as the vehicle control. A subset of mice in the ALI group received two intraperitoneal doses of dexamethasone 1 and 24 h after LPS. [18F]FDG PET/CT was performed 2 days after the induction of ALI. [18F]FDG uptake in the lungs was quantified by PET (%ID/mLmean and standardized uptake value (SUVmean)) and ex vivo γ-counting (%ID/g). The severity of lung inflammation was determined by quantifying the protein level of inflammatory cytokines/chemokines and the activity of neutrophil elastase and glycolytic enzymes. In separate groups of mice, flow cytometry was performed to estimate the contribution of individual immune cell types to the total pulmonary inflammatory cell burden under different treatment conditions. RESULTS: Lung uptake of [18F]FDG was significantly increased during LPS-induced ALI, and a decreased [18F]FDG uptake was observed following dexamethasone treatment to an intermediate level between that of LPS-treated and control mice. Protein expression of inflammatory biomarkers and the activity of neutrophil elastase and glycolytic enzymes were increased in the lungs of LPS-treated mice versus those of control mice, and correlated with [18F]FDG uptake. Furthermore, dexamethasone-induced decreases in cytokine/chemokine protein levels and enzyme activities correlated with [18F]FDG uptake. Neutrophils were the most abundant cells in LPS-induced ALI, and the pattern of total cell burden during ALI with or without dexamethasone therapy mirrored that of [18F]FDG uptake. CONCLUSIONS: [18F]FDG PET noninvasively detects lung inflammation in ALI and its response to anti-inflammatory therapy in a preclinical model. However, high [18F]FDG uptake by bone, brown fat, and myocardium remains a technical limitation for quantification of [18F]FDG in the lungs.


Subject(s)
Acute Lung Injury , Pneumonia , Mice , Animals , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Leukocyte Elastase , Glucose , Lipopolysaccharides , Disease Models, Animal , Positron-Emission Tomography , Pneumonia/diagnostic imaging , Pneumonia/drug therapy , Acute Lung Injury/diagnostic imaging , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Dexamethasone/pharmacology , Dexamethasone/therapeutic use
6.
Proc Natl Acad Sci U S A ; 120(3): e2216458120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36626557

ABSTRACT

The lack of techniques for noninvasive imaging of inflammation has challenged precision medicine management of acute respiratory distress syndrome (ARDS). Here, we determined the potential of positron emission tomography (PET) of chemokine-like receptor-1 (CMKLR1) to monitor lung inflammation in a murine model of lipopolysaccharide-induced injury. Lung uptake of a CMKLR1-targeting radiotracer, [64Cu]NODAGA-CG34, was significantly increased in lipopolysaccharide-induced injury, correlated with the expression of multiple inflammatory markers, and reduced by dexamethasone treatment. Monocyte-derived macrophages, followed by interstitial macrophages and monocytes were the major CMKLR1-expressing leukocytes contributing to the increased tracer uptake throughout the first week of lipopolysaccharide-induced injury. The clinical relevance of CMKLR1 as a biomarker of lung inflammation in ARDS was confirmed using single-nuclei RNA-sequencing datasets which showed significant increases in CMKLR1 expression among transcriptionally distinct subsets of lung monocytes and macrophages in COVID-19 patients vs. controls. CMKLR1-targeted PET is a promising strategy to monitor the dynamics of lung inflammation and response to anti-inflammatory treatment in ARDS.


Subject(s)
Acute Lung Injury , COVID-19 , Respiratory Distress Syndrome , Humans , Mice , Animals , Lipopolysaccharides/toxicity , Acute Lung Injury/chemically induced , Acute Lung Injury/diagnostic imaging , Acute Lung Injury/metabolism , Lung/diagnostic imaging , Lung/metabolism , Chemokines/metabolism , Respiratory Distress Syndrome/diagnostic imaging , Molecular Imaging , Receptors, Chemokine
SELECTION OF CITATIONS
SEARCH DETAIL
...