Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Auton Neurosci ; 241: 103007, 2022 09.
Article in English | MEDLINE | ID: mdl-35716525

ABSTRACT

A reciprocal relationship between the baroreflex and cerebral autoregulation (CA) has been demonstrated at rest and in response to acute hypotension. We hypothesized that the reciprocal relationship between cardiac baroreflex sensitivity (BRS) and CA would be maintained during sustained central hypovolemia induced by lower body negative pressure (LBNP), and that the strength of this relationship would be greater in subjects with higher tolerance to this stress. Healthy young adults (n = 51; 23F/28M) completed a LBNP protocol to presyncope. Subjects were classified as high tolerant (HT; completion of -60 mmHg LBNP stage, ≥20-min) or low tolerant (LT; did not complete -60 mmHg LBNP stage, <20-min). R-R intervals (RRI), systolic arterial pressure (SAP), mean arterial pressure (MAP), and middle cerebral artery velocity (MCAv) were measured continuously. Cardiac BRS was calculated in the time domain (ΔHR/ΔSAP) and frequency domain (RRI-SAP low frequency (LF) transfer function gain), and CA was calculated in the time domain (ΔMCAv/ΔMAP) and frequency domain (MAP-mean MCAv LF transfer function gain). There was a moderate relationship between cardiac BRS and CA for the group of 51 subjects in both the time (R = -0.54, P < 0.0001) and frequency (R = 0.61, P < 0.001) domains; there was a stronger relationship in the HT group (R = 0.73) compared to the LT group (R = 0.31) in the frequency domain (P = 0.08), but no difference between groups in the time domain (HT: R = -0.73 vs. LT: R = -0.63; P = 0.27). These findings suggest that an interaction between BRS and CA may be an important compensatory mechanism that contributes to tolerance to simulated hemorrhage in young healthy adults.


Subject(s)
Lower Body Negative Pressure , Pressoreceptors , Blood Pressure/physiology , Heart Rate/physiology , Hemorrhage , Homeostasis/physiology , Humans , Young Adult
2.
Physiol Meas ; 42(6)2021 06 29.
Article in English | MEDLINE | ID: mdl-34038879

ABSTRACT

Introduction.Oscillatory patterns in arterial pressure and blood flow (at ∼0.1 Hz) may protect tissue oxygenation during conditions of reduced cerebral perfusion and/or hypoxia. We hypothesized that inducing oscillations in arterial pressure and cerebral blood flow at 0.1 Hz would protect cerebral blood flow and cerebral tissue oxygen saturation during exposure to a combination of simulated hemorrhage and sustained hypobaric hypoxia.Methods.Eight healthy human subjects (4 male, 4 female; 30.1 ± 7.6 year) participated in two experiments at high altitude (White Mountain, California, USA; altitude, 3800 m) following rapid ascent and 5-7 d of acclimatization: (1) static lower body negative pressure (LBNP, control condition) was used to induce central hypovolemia by reducing chamber pressure to -60 mmHg for 10 min(0 Hz), and; (2) oscillatory LBNP where chamber pressure was reduced to -60 mmHg, then oscillated every 5 s between -30 mmHg and -90 mmHg for 10 min(0.1 Hz). Measurements included arterial pressure, internal carotid artery (ICA) blood flow, middle cerebral artery velocity (MCAv), and cerebral tissue oxygen saturation (ScO2).Results.Forced 0.1 Hz oscillations in mean arterial pressure and mean MCAv were accompanied by a protection of ScO2(0.1 Hz: -0.67% ± 1.0%; 0 Hz: -4.07% ± 2.0%;P = 0.01). However, the 0.1 Hz profile did not protect against reductions in ICA blood flow (0.1 Hz: -32.5% ± 4.5%; 0 Hz: -19.9% ± 8.9%;P = 0.24) or mean MCAv (0.1 Hz: -18.5% ± 3.4%; 0 Hz: -15.3% ± 5.4%;P = 0.16).Conclusions.Induced oscillatory arterial pressure and cerebral blood flow led to protection of ScO2during combined simulated hemorrhage and sustained hypoxia. This protection was not associated with the preservation of cerebral blood flow suggesting preservation of ScO2may be due to mechanisms occurring within the microvasculature.


Subject(s)
Altitude , Cerebrovascular Circulation , Blood Flow Velocity , Blood Pressure , Female , Humans , Hypovolemia , Male , Middle Cerebral Artery , Perfusion
3.
J Appl Physiol (1985) ; 130(6): 1786-1797, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33914663

ABSTRACT

Trauma-induced hemorrhage is a leading cause of disability and death due, in part, to impaired perfusion and oxygenation of the brain. It is unknown if cerebrovascular responses to blood loss are differentiated based on sex. We hypothesized that compared to males, females would have reduced tolerance to simulated hemorrhage induced by maximal lower body negative pressure (LBNP), and this would be associated with an earlier reduction in cerebral blood flow and cerebral oxygenation. Healthy young males (n = 29, 26 ± 4 yr) and females (n = 23, 27 ± 5 yr) completed a step-wise LBNP protocol to presyncope. Mean arterial pressure (MAP), stroke volume (SV), middle cerebral artery velocity (MCAv), end-tidal CO2 (etCO2), and cerebral oxygen saturation (ScO2) were measured continuously. Unexpectedly, tolerance to LBNP was similar between the sexes (males, 1,604 ± 68 s vs. females, 1,453 ± 78 s; P = 0.15). Accordingly, decreases (%Δ) in MAP, SV, MCAv, and ScO2 were similar between males and females throughout LBNP and at presyncope (P ≥ 0.20). Interestingly, although decreases in etCO2 were similar between the sexes throughout LBNP (P = 0.16), at presyncope, the %Δ etCO2 from baseline was greater in males compared to females (-30.8 ± 2.6% vs. -21.3 ± 3.0%; P = 0.02). Contrary to our hypothesis, sex does not influence tolerance, or the central or cerebral hemodynamic responses to simulated hemorrhage. However, the etCO2 responses at presyncope do suggest potential sex differences in cerebral vascular sensitivity to CO2 during central hypovolemia.NEW & NOTEWORTHY Tolerance and cerebral blood velocity responses to simulated hemorrhage (elicited by lower body negative pressure) were similar between male and female subjects. Interestingly, the change in etCO2 from baseline was greater in males compared to females at presyncope, suggesting potential sex differences in cerebral vascular sensitivity to CO2 during simulated hemorrhage. These findings may facilitate development of individualized therapeutic interventions to improve survival from hemorrhagic injuries in both men and women.


Subject(s)
Hypovolemia , Lower Body Negative Pressure , Blood Pressure , Cerebrovascular Circulation , Female , Hemodynamics , Humans , Male , Middle Cerebral Artery
SELECTION OF CITATIONS
SEARCH DETAIL
...