Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Arch Otorhinolaryngol ; 281(4): 2055-2062, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37695363

ABSTRACT

PURPOSE: To develop and validate a deep learning model for distinguishing healthy vocal folds (HVF) and vocal fold polyps (VFP) on laryngoscopy videos, while demonstrating the ability of a previously developed informative frame classifier in facilitating deep learning development. METHODS: Following retrospective extraction of image frames from 52 HVF and 77 unilateral VFP videos, two researchers manually labeled each frame as informative or uninformative. A previously developed informative frame classifier was used to extract informative frames from the same video set. Both sets of videos were independently divided into training (60%), validation (20%), and test (20%) by patient. Machine-labeled frames were independently verified by two researchers to assess the precision of the informative frame classifier. Two models, pre-trained on ResNet18, were trained to classify frames as containing HVF or VFP. The accuracy of the polyp classifier trained on machine-labeled frames was compared to that of the classifier trained on human-labeled frames. The performance was measured by accuracy and area under the receiver operating characteristic curve (AUROC). RESULTS: When evaluated on a hold-out test set, the polyp classifier trained on machine-labeled frames achieved an accuracy of 85% and AUROC of 0.84, whereas the classifier trained on human-labeled frames achieved an accuracy of 69% and AUROC of 0.66. CONCLUSION: An accurate deep learning classifier for vocal fold polyp identification was developed and validated with the assistance of a peer-reviewed informative frame classifier for dataset assembly. The classifier trained on machine-labeled frames demonstrates improved performance compared to the classifier trained on human-labeled frames.


Subject(s)
Deep Learning , Polyps , Humans , Laryngoscopy/methods , Vocal Cords/diagnostic imaging , Neural Networks, Computer , Retrospective Studies , Machine Learning , Polyps/diagnostic imaging
2.
bioRxiv ; 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37693566

ABSTRACT

Assessing fertilized human embryos is crucial for in vitro-fertilization (IVF), a task being revolutionized by artificial intelligence and deep learning. Existing models used for embryo quality assessment and chromosomal abnormality (ploidy) detection could be significantly improved by effectively utilizing time-lapse imaging to identify critical developmental time points for maximizing prediction accuracy. Addressing this, we developed and compared various embryo ploidy status prediction models across distinct embryo development stages. We present BELA (Blastocyst Evaluation Learning Algorithm), a state-of-the-art ploidy prediction model surpassing previous image- and video-based models, without necessitating subjective input from embryologists. BELA uses multitask learning to predict quality scores that are used downstream to predict ploidy status. By achieving an AUC of 0.76 for discriminating between euploidy and aneuploidy embryos on the Weill Cornell dataset, BELA matches the performance of models trained on embryologists' manual scores. While not a replacement for preimplantation genetic testing for aneuploidy (PGT-A), BELA exemplifies how such models can streamline the embryo evaluation process, reducing time and effort required by embryologists.

3.
Lancet Digit Health ; 5(1): e28-e40, 2023 01.
Article in English | MEDLINE | ID: mdl-36543475

ABSTRACT

BACKGROUND: One challenge in the field of in-vitro fertilisation is the selection of the most viable embryos for transfer. Morphological quality assessment and morphokinetic analysis both have the disadvantage of intra-observer and inter-observer variability. A third method, preimplantation genetic testing for aneuploidy (PGT-A), has limitations too, including its invasiveness and cost. We hypothesised that differences in aneuploid and euploid embryos that allow for model-based classification are reflected in morphology, morphokinetics, and associated clinical information. METHODS: In this retrospective study, we used machine-learning and deep-learning approaches to develop STORK-A, a non-invasive and automated method of embryo evaluation that uses artificial intelligence to predict embryo ploidy status. Our method used a dataset of 10 378 embryos that consisted of static images captured at 110 h after intracytoplasmic sperm injection, morphokinetic parameters, blastocyst morphological assessments, maternal age, and ploidy status. Independent and external datasets, Weill Cornell Medicine EmbryoScope+ (WCM-ES+; Weill Cornell Medicine Center of Reproductive Medicine, NY, USA) and IVI Valencia (IVI Valencia, Health Research Institute la Fe, Valencia, Spain) were used to test the generalisability of STORK-A and were compared measuring accuracy and area under the receiver operating characteristic curve (AUC). FINDINGS: Analysis and model development included the use of 10 378 embryos, all with PGT-A results, from 1385 patients (maternal age range 21-48 years; mean age 36·98 years [SD 4·62]). STORK-A predicted aneuploid versus euploid embryos with an accuracy of 69·3% (95% CI 66·9-71·5; AUC 0·761; positive predictive value [PPV] 76·1%; negative predictive value [NPV] 62·1%) when using images, maternal age, morphokinetics, and blastocyst score. A second classification task trained to predict complex aneuploidy versus euploidy and single aneuploidy produced an accuracy of 74·0% (95% CI 71·7-76·1; AUC 0·760; PPV 54·9%; NPV 87·6%) using an image, maternal age, morphokinetic parameters, and blastocyst grade. A third classification task trained to predict complex aneuploidy versus euploidy had an accuracy of 77·6% (95% CI 75·0-80·0; AUC 0·847; PPV 76·7%; NPV 78·0%). STORK-A reported accuracies of 63·4% (AUC 0·702) on the WCM-ES+ dataset and 65·7% (AUC 0·715) on the IVI Valencia dataset, when using an image, maternal age, and morphokinetic parameters, similar to the STORK-A test dataset accuracy of 67·8% (AUC 0·737), showing generalisability. INTERPRETATION: As a proof of concept, STORK-A shows an ability to predict embryo ploidy in a non-invasive manner and shows future potential as a standardised supplementation to traditional methods of embryo selection and prioritisation for implantation or recommendation for PGT-A. FUNDING: US National Institutes of Health.


Subject(s)
Artificial Intelligence , Preimplantation Diagnosis , United States , Pregnancy , Female , Humans , Male , Young Adult , Adult , Middle Aged , Retrospective Studies , Preimplantation Diagnosis/methods , Semen , Ploidies , Blastocyst , Aneuploidy
4.
Laryngoscope Investig Otolaryngol ; 7(2): 460-466, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35434326

ABSTRACT

Objective: This study aims to develop and validate a convolutional neural network (CNN)-based algorithm for automatic selection of informative frames in flexible laryngoscopic videos. The classifier has the potential to aid in the development of computer-aided diagnosis systems and reduce data processing time for clinician-computer scientist teams. Methods: A dataset of 22,132 laryngoscopic frames was extracted from 137 flexible laryngostroboscopic videos from 115 patients. 55 videos were from healthy patients with no laryngeal pathology and 82 videos were from patients with vocal fold polyps. The extracted frames were manually labeled as informative or uninformative by two independent reviewers based on vocal fold visibility, lighting, focus, and camera distance, resulting in 18,114 informative frames and 4018 uninformative frames. The dataset was split into training and test sets. A pre-trained ResNet-18 model was trained using transfer learning to classify frames as informative or uninformative. Hyperparameters were set using cross-validation. The primary outcome was precision for the informative class and secondary outcomes were precision, recall, and F1-score for all classes. The processing rate for frames between the model and a human annotator were compared. Results: The automated classifier achieved an informative frame precision, recall, and F1-score of 94.4%, 90.2%, and 92.3%, respectively, when evaluated on a hold-out test set of 4438 frames. The model processed frames 16 times faster than a human annotator. Conclusion: The CNN-based classifier demonstrates high precision for classifying informative frames in flexible laryngostroboscopic videos. This model has the potential to aid researchers with dataset creation for computer-aided diagnosis systems by automatically extracting relevant frames from laryngoscopic videos.

5.
J Magn Reson Imaging ; 54(2): 462-471, 2021 08.
Article in English | MEDLINE | ID: mdl-33719168

ABSTRACT

BACKGROUND: A definitive diagnosis of prostate cancer requires a biopsy to obtain tissue for pathologic analysis, but this is an invasive procedure and is associated with complications. PURPOSE: To develop an artificial intelligence (AI)-based model (named AI-biopsy) for the early diagnosis of prostate cancer using magnetic resonance (MR) images labeled with histopathology information. STUDY TYPE: Retrospective. POPULATION: Magnetic resonance imaging (MRI) data sets from 400 patients with suspected prostate cancer and with histological data (228 acquired in-house and 172 from external publicly available databases). FIELD STRENGTH/SEQUENCE: 1.5 to 3.0 Tesla, T2-weighted image pulse sequences. ASSESSMENT: MR images reviewed and selected by two radiologists (with 6 and 17 years of experience). The patient images were labeled with prostate biopsy including Gleason Score (6 to 10) or Grade Group (1 to 5) and reviewed by one pathologist (with 15 years of experience). Deep learning models were developed to distinguish 1) benign from cancerous tumor and 2) high-risk tumor from low-risk tumor. STATISTICAL TESTS: To evaluate our models, we calculated negative predictive value, positive predictive value, specificity, sensitivity, and accuracy. We also calculated areas under the receiver operating characteristic (ROC) curves (AUCs) and Cohen's kappa. RESULTS: Our computational method (https://github.com/ih-lab/AI-biopsy) achieved AUCs of 0.89 (95% confidence interval [CI]: [0.86-0.92]) and 0.78 (95% CI: [0.74-0.82]) to classify cancer vs. benign and high- vs. low-risk of prostate disease, respectively. DATA CONCLUSION: AI-biopsy provided a data-driven and reproducible way to assess cancer risk from MR images and a personalized strategy to potentially reduce the number of unnecessary biopsies. AI-biopsy highlighted the regions of MR images that contained the predictive features the algorithm used for diagnosis using the class activation map method. It is a fully automatic method with a drag-and-drop web interface (https://ai-biopsy.eipm-research.org) that allows radiologists to review AI-assessed MR images in real time. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Deep Learning , Prostatic Neoplasms , Radiology , Artificial Intelligence , Humans , Magnetic Resonance Imaging , Male , Prostatic Neoplasms/diagnostic imaging , Retrospective Studies
6.
Angew Chem Int Ed Engl ; 53(35): 9302-5, 2014 Aug 25.
Article in English | MEDLINE | ID: mdl-25044229

ABSTRACT

A DNA crosslinking approach, which is distinct but related to the double alkylation by mitomycin C, involving a novel electrophilic spiro-cyclopropane intermediate is hypothesized. Rational design and substantial structural simplification permitted the expedient chemical synthesis and rapid discovery of MTSB-6, a mitomycin C analogue which is twice as potent as mitomycin C against the prostate cancer cells. MTSB-6 shows improvements in its selective action against noncancer prostate cells over mitomycin C. This hypothesis-driven discovery opens novel yet synthetically accessible mitosene structural space for discovering more potent and less toxic therapeutic candidates.


Subject(s)
Mitomycin/pharmacology , Mitomycins/chemistry , Mitomycins/pharmacology , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Mitomycin/chemistry , Mitomycins/chemical synthesis , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...