Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(17): 16539-16552, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37595605

ABSTRACT

The pro-inflammatory response of alveolar macrophages to injurious physical forces during mechanical ventilation is regulated by the anti-inflammatory microRNA, miR-146a. Increasing miR-146a expression to supraphysiologic levels using untargeted lipid nanoparticles reduces ventilator-induced lung injury but requires a high initial dose of miR-146a making it less clinically applicable. In this study, we developed mannosylated lipid nanoparticles that can effectively mitigate lung injury at the initiation of mechanical ventilation with lower doses of miR-146a. We used a physiologically relevant humanized in vitro coculture system to evaluate the cell-specific targeting efficiency of the mannosylated lipid nanoparticle. We discovered that mannosylated lipid nanoparticles preferentially deliver miR-146a to alveolar macrophages and reduce force-induced inflammation in vitro. Our in vivo study using a clinically relevant mouse model of hemorrhagic shock-induced acute respiratory distress syndrome demonstrated that delivery of a low dose of miR-146a (0.1 nmol) using mannosylated lipid nanoparticles dramatically increases miR-146a levels in mouse alveolar macrophages and decreases lung inflammation. These data suggest that mannosylated lipid nanoparticles may have the therapeutic potential to mitigate lung injury during mechanical ventilation.


Subject(s)
Lung Injury , MicroRNAs , Respiratory Distress Syndrome , Shock, Hemorrhagic , Animals , Mice , Macrophages , Respiratory Distress Syndrome/drug therapy
2.
bioRxiv ; 2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36824913

ABSTRACT

The pro-inflammatory response of alveolar macrophages to injurious physical forces during mechanical ventilation is regulated by the anti-inflammatory microRNA, miR-146a. Increasing miR-146a expression to supraphysiologic levels using untargeted lipid nanoparticles reduces ventilator-induced lung injury, but requires a high initial dose of miR-146a making it less clinically applicable. In this study, we developed mannosylated lipid nanoparticles that can effectively mitigate lung injury at the initiation of mechanical ventilation with lower doses of miR-146a. We used a physiologically relevant humanized in vitro co-culture system to evaluate the cell-specific targeting efficiency of the mannosylated lipid nanoparticle. We discovered that mannosylated lipid nanoparticles preferentially deliver miR-146a to alveolar macrophages and reduce force-induced inflammation in vitro . Our in vivo study using a clinically relevant mouse model of hemorrhagic shock-induced acute respiratory distress syndrome demonstrated that delivery of a low dose miR-146a (0.1 nmol) using mannosylated lipid nanoparticles dramatically increases miR-146a in mouse alveolar macrophages and decreases lung inflammation. These data suggest that mannosylated lipid nanoparticles may have therapeutic potential to mitigate lung injury during mechanical ventilation.

SELECTION OF CITATIONS
SEARCH DETAIL
...