Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Diabetes ; 71(11): 2297-2312, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35983955

ABSTRACT

The innate immune kinase TBK1 (TANK-binding kinase 1) responds to microbial-derived signals to initiate responses against viral and bacterial pathogens. More recent work implicates TBK1 in metabolism and tumorigenesis. The kinase mTOR (mechanistic target of rapamycin) integrates diverse environmental cues to control fundamental cellular processes. Our prior work demonstrated in cells that TBK1 phosphorylates mTOR (on S2159) to increase mTORC1 and mTORC2 catalytic activity and signaling. Here we investigate a role for TBK1-mTOR signaling in control of glucose metabolism in vivo. We find that mice with diet-induced obesity (DIO) but not lean mice bearing a whole-body "TBK1-resistant" Mtor S2159A knock-in allele (MtorA/A) display exacerbated hyperglycemia and systemic insulin resistance with no change in energy balance. Mechanistically, Mtor S2159A knock-in in DIO mice reduces mTORC1 and mTORC2 signaling in response to insulin and innate immune agonists, reduces anti-inflammatory gene expression in adipose tissue, and blunts anti-inflammatory macrophage M2 polarization, phenotypes shared by mice with tissue-specific inactivation of TBK1 or mTOR complexes. Tissues from DIO mice display elevated TBK1 activity and mTOR S2159 phosphorylation relative to lean mice. We propose a model whereby obesity-associated signals increase TBK1 activity and mTOR phosphorylation, which boost mTORC1 and mTORC2 signaling in parallel to the insulin pathway, thereby attenuating insulin resistance to improve glycemic control during diet-induced obesity.


Subject(s)
Hyperglycemia , Insulin Resistance , Mice , Animals , Insulin Resistance/genetics , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2 , Sirolimus/pharmacology , Insulin/metabolism , Obesity/genetics , Mice, Obese , Hyperglycemia/genetics , Glucose , Protein Serine-Threonine Kinases/genetics
2.
Mol Metab ; 32: 168-175, 2020 02.
Article in English | MEDLINE | ID: mdl-32029227

ABSTRACT

BACKGROUND: Leptin acts via its receptor, LepRb, on specialized neurons in the brain to modulate energy balance and glucose homeostasis. LepRb→STAT3 signaling plays a crucial role in leptin action, but LepRb also mediates an additional as-yet-unidentified signal (Signal 2) that is important for leptin action. Signal 2 requires LepRb regions in addition to those required for JAK2 activation but operates independently of STAT3 and LepRb phosphorylation sites. METHODS: To identify LepRb sequences that mediate Signal 2, we used CRISPR/Cas9 to generate five novel mouse lines containing COOH-terminal truncation mutants of LepRb. We analyzed the metabolic phenotype and measures of hypothalamic function for these mouse lines. RESULTS: We found that deletion of LepRb sequences between residues 921 and 960 dramatically worsens metabolic control and alters hypothalamic function relative to smaller truncations. We also found that deletion of the regions including residues 1013-1053 and 960-1013 each decreased obesity compared to deletions that included additional COOH-terminal residues. CONCLUSIONS: LepRb sequences between residues 921 and 960 mediate the STAT3 and LepRb phosphorylation-independent second signal that contributes to the control of energy balance and metabolism by leptin/LepRb. In addition to confirming the inhibitory role of the region (residues 961-1013) containing Tyr985, we also identified the region containing residues 1013-1053 (which contains no Tyr residues) as a second potential mediator of LepRb inhibition. Thus, the intracellular domain of LepRb mediates multiple Tyr-independent signals.


Subject(s)
Receptors, Leptin/genetics , STAT3 Transcription Factor/metabolism , Amino Acid Sequence , Animals , CRISPR-Cas Systems/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Obesity/metabolism , Receptors, Leptin/metabolism , STAT3 Transcription Factor/genetics , Signal Transduction
3.
Sci Signal ; 12(585)2019 06 11.
Article in English | MEDLINE | ID: mdl-31186373

ABSTRACT

AMP-activated protein kinase (AMPK) senses energetic stress and, in turn, promotes catabolic and suppresses anabolic metabolism coordinately to restore energy balance. We found that a diverse array of AMPK activators increased mTOR complex 2 (mTORC2) signaling in an AMPK-dependent manner in cultured cells. Activation of AMPK with the type 2 diabetes drug metformin (GlucoPhage) also increased mTORC2 signaling in liver in vivo and in primary hepatocytes in an AMPK-dependent manner. AMPK-mediated activation of mTORC2 did not result from AMPK-mediated suppression of mTORC1 and thus reduced negative feedback on PI3K flux. Rather, AMPK associated with and directly phosphorylated mTORC2 (mTOR in complex with rictor). As determined by two-stage in vitro kinase assay, phosphorylation of mTORC2 by recombinant AMPK was sufficient to increase mTORC2 catalytic activity toward Akt. Hence, AMPK phosphorylated mTORC2 components directly to increase mTORC2 activity and downstream signaling. Functionally, inactivation of AMPK, mTORC2, and Akt increased apoptosis during acute energetic stress. By showing that AMPK activates mTORC2 to increase cell survival, these data provide a potential mechanism for how AMPK paradoxically promotes tumorigenesis in certain contexts despite its tumor-suppressive function through inhibition of growth-promoting mTORC1. Collectively, these data unveil mTORC2 as a target of AMPK and the AMPK-mTORC2 axis as a promoter of cell survival during energetic stress.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Apoptosis , Energy Metabolism , Hepatocytes/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Stress, Physiological , AMP-Activated Protein Kinases/genetics , Animals , Cell Line , Cell Survival , Mechanistic Target of Rapamycin Complex 2/genetics , Mice , Mice, Knockout , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
4.
Elife ; 82019 04 04.
Article in English | MEDLINE | ID: mdl-30946012

ABSTRACT

The brain regulates fertility through gonadotropin-releasing hormone (GnRH) neurons. Estradiol induces negative feedback on pulsatile GnRH/luteinizing hormone (LH) release and positive feedback generating preovulatory GnRH/LH surges. Negative and positive feedbacks are postulated to be mediated by kisspeptin neurons in arcuate and anteroventral periventricular (AVPV) nuclei, respectively. Kisspeptin-specific ERα knockout mice exhibit disrupted LH pulses and surges. This knockout approach is neither location-specific nor temporally controlled. We utilized CRISPR-Cas9 to disrupt ERα in adulthood. Mice with ERα disruption in AVPV kisspeptin neurons have typical reproductive cycles but blunted LH surges, associated with decreased excitability of these neurons. Mice with ERα knocked down in arcuate kisspeptin neurons showed disrupted cyclicity, associated with increased glutamatergic transmission to these neurons. These observations suggest that activational effects of estradiol regulate surge generation and maintain cyclicity through AVPV and arcuate kisspeptin neurons, respectively, independent from its role in the development of hypothalamic kisspeptin neurons or puberty onset.


Subject(s)
Hypothalamus/physiology , Neurons/physiology , Reproduction , Sexual Behavior, Animal , Animals , Estradiol/metabolism , Estrogen Receptor alpha/deficiency , Female , Gene Knockout Techniques , Kisspeptins/analysis , Mice, Knockout , Neurons/chemistry
5.
Diabetes ; 67(6): 1093-1104, 2018 06.
Article in English | MEDLINE | ID: mdl-29535089

ABSTRACT

Leptin acts via its receptor (LepRb) to modulate gene expression in hypothalamic LepRb-expressing neurons, thereby controlling energy balance and glucose homeostasis. Despite the importance of the control of gene expression in hypothalamic LepRb neurons for leptin action, the transcriptional targets of LepRb signaling have remained undefined because LepRb cells contribute a small fraction to the aggregate transcriptome of the brain regions in which they reside. We thus employed translating ribosome affinity purification followed by RNA sequencing to isolate and analyze mRNA from the hypothalamic LepRb neurons of wild-type or leptin-deficient (Lepob/ob) mice treated with vehicle or exogenous leptin. Although the expression of most of the genes encoding the neuropeptides commonly considered to represent the main targets of leptin action were altered only following chronic leptin deprivation, our analysis revealed other transcripts that were coordinately regulated by leptin under multiple treatment conditions. Among these, acute leptin treatment increased expression of the transcription factor Atf3 in LepRb neurons. Furthermore, ablation of Atf3 from LepRb neurons (Atf3LepRbKO mice) decreased leptin efficacy and promoted positive energy balance in mice. Thus, this analysis revealed the gene targets of leptin action, including Atf3, which represents a cellular mediator of leptin action.


Subject(s)
Activating Transcription Factor 3/agonists , Gene Expression Regulation , Hypothalamus/metabolism , Leptin/metabolism , Neurons/metabolism , Receptors, Leptin/agonists , Signal Transduction , Activating Transcription Factor 3/chemistry , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Animals , Crosses, Genetic , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Energy Metabolism/drug effects , Female , Gene Expression Profiling , Gene Expression Regulation/drug effects , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypothalamus/cytology , Hypothalamus/drug effects , Hypothalamus/pathology , Leptin/analogs & derivatives , Leptin/pharmacology , Leptin/therapeutic use , Lipotropic Agents/pharmacology , Lipotropic Agents/therapeutic use , Male , Mice, Knockout , Mice, Mutant Strains , Mice, Transgenic , Nerve Tissue Proteins/agonists , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/drug effects , Neurons/pathology , Obesity/drug therapy , Obesity/metabolism , Obesity/pathology , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Sequence Analysis, RNA , Signal Transduction/drug effects
6.
EMBO J ; 37(1): 19-38, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29150432

ABSTRACT

The innate immune kinase TBK1 initiates inflammatory responses to combat infectious pathogens by driving production of type I interferons. TBK1 also controls metabolic processes and promotes oncogene-induced cell proliferation and survival. Here, we demonstrate that TBK1 activates mTOR complex 1 (mTORC1) directly. In cultured cells, TBK1 associates with and activates mTORC1 through site-specific mTOR phosphorylation (on S2159) in response to certain growth factor receptors (i.e., EGF-receptor but not insulin receptor) and pathogen recognition receptors (PRRs) (i.e., TLR3; TLR4), revealing a stimulus-selective role for TBK1 in mTORC1 regulation. By studying cultured macrophages and those isolated from genome edited mTOR S2159A knock-in mice, we show that mTOR S2159 phosphorylation promotes mTORC1 signaling, IRF3 nuclear translocation, and IFN-ß production. These data demonstrate a direct mechanistic link between TBK1 and mTORC1 function as well as physiologic significance of the TBK1-mTORC1 axis in control of innate immune function. These data unveil TBK1 as a direct mTORC1 activator and suggest unanticipated roles for mTORC1 downstream of TBK1 in control of innate immunity, tumorigenesis, and disorders linked to chronic inflammation.


Subject(s)
Immunity, Innate/drug effects , Intercellular Signaling Peptides and Proteins/pharmacology , Interferon Regulatory Factor-3/metabolism , Macrophages/immunology , Mechanistic Target of Rapamycin Complex 1/metabolism , Protein Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Nucleus/metabolism , Cells, Cultured , Cytosol/metabolism , Humans , Interferon Regulatory Factor-3/genetics , Macrophages/drug effects , Macrophages/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mice , Phosphorylation/drug effects , Protein Serine-Threonine Kinases/genetics , Protein Transport , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/genetics
7.
Vet Parasitol ; 226: 83-7, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27514890

ABSTRACT

Parascaris equorum is an intestinal nematode of foals and young horses that can produce mild to severe pathology. Current diagnosis is limited to detection of patent infections, when parasite eggs are identified during fecal examinations. This study examined the use of larval P. equorum excretory-secretory (ES) products in a western blot test for diagnosis of prepatent equine P. equorum infection. Sera from adult mares negative for patent P. equorum infections, foals prior to consuming colostrum, and P. equorum infected foals were used as controls in this study. Study samples included sera from 18 broodmares prior to parturition and sera from their foals throughout the process of natural infection. Sera from study horses were examined for IgG(T) antibody recognition of ES products. Foals naturally infected with P. equorum possessed IgG(T) antibodies against 19kDa, 22kDa, 26kDa, and 34kDa ES products. However, passive transfer of colostral antibodies from mares was shown to preclude the use of the crude larval ES product-based western blot test for diagnosis of prepatent P. equorum infections in foals.


Subject(s)
Antibodies, Helminth/biosynthesis , Antigens, Helminth/immunology , Ascaridida Infections/veterinary , Ascaridoidea/immunology , Horse Diseases/parasitology , Animals , Antibodies, Helminth/blood , Ascaridida Infections/diagnosis , Ascaridida Infections/immunology , Ascaridida Infections/parasitology , Blotting, Western/veterinary , Cohort Studies , Colostrum/immunology , Feces/parasitology , Female , Horse Diseases/diagnosis , Horse Diseases/immunology , Horses , Immunity, Maternally-Acquired , Immunoglobulin G/biosynthesis , Immunoglobulin G/blood , Larva/immunology , Male , Parasite Egg Count/veterinary
8.
Shock ; 45(6): 677-85, 2016 06.
Article in English | MEDLINE | ID: mdl-26682946

ABSTRACT

Lipopolysaccharide (LPS) is known to impair insulin-stimulated muscle glucose uptake (MGU). We determined if increased glucose transport (GLUT4) or phosphorylation capacity (hexokinase II; HKII) could overcome the impairment in MGU. We used mice that overexpressed GLUT4 (GLUT4) or HKII (HK) in skeletal muscle. Studies were performed in conscious, chronically catheterized (carotid artery and jugular vein) mice. Mice received an intravenous bolus of either LPS (10 µg/g body weight) or vehicle (VEH). After 5 h, a hyperinsulinemic-euglycemic clamp was performed. As MGU is also dependent on cardiovascular function that is negatively affected by LPS, cardiac function was assessed using echocardiography. LPS decreased whole body glucose disposal and MGU in wild-type (WT) and HK mice. In contrast, the decrease was attenuated in GLUT4 mice. Although membrane-associated GLUT4 was increased in VEH-treated GLUT4 mice, LPS impaired membrane-associated GLUT4 in GLUT4 mice to the same level as LPS-treated WT mice. This suggested that overexpression of GLUT4 had further benefits beyond preserving transport activity. In fact, GLUT4 overexpression attenuated the LPS-induced decrease in cardiac function. The maintenance of MGU in GLUT4 mice following LPS was accompanied by sustained anaerobic glycolytic flux as suggested by increased muscle Pdk4 expression, and elevated lactate availability. Thus, enhanced glucose transport, but not phosphorylation capacity, ameliorates LPS-induced impairments in MGU. This benefit is mediated by long-term adaptations to the overexpression of GLUT4 that sustain muscle anaerobic glycolytic flux and cardiac function in response to LPS.


Subject(s)
Blood Glucose/metabolism , Insulin/metabolism , Lipopolysaccharides/metabolism , Muscle, Skeletal/metabolism , Phosphorylation , Animals , Disease Models, Animal , Glucose Transporter Type 4/metabolism , Glycogen/metabolism , Mice , Mice, Inbred C57BL , Muscle Proteins/metabolism
9.
Am J Vet Res ; 76(10): 889-96, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26413827

ABSTRACT

OBJECTIVE: To determine effects of a microalgae nutritional product on insulin sensitivity in horses. ANIMALS: 8 healthy mature horses. PROCEDURES :Horses (n = 4/group) received a basal diet without (control diet) or with docosahexaenoic acid-rich microalgae meal (150 g/d) for 49 days (day 0 = first day of diet). On day 28, an isoglycemic hyperinsulinemic clamp procedure was performed. Horses then received dexamethasone (0.04 mg/kg/d) for 21 days. On day 49, the clamp procedure was repeated. After a 60-day washout, horses received the alternate diet, and procedures were repeated. Plasma fatty acid, glucose, and insulin concentrations and glucose and insulin dynamics during the clamp procedure were measured on days 28 and 49. Two estimates of insulin sensitivity (reciprocal of the square root of the insulin concentration and the modified insulin-to-glucose ratio for ponies) were calculated. RESULTS: Baseline glucose and insulin concentrations or measures of insulin sensitivity on day 28 did not differ between horses when fed the control diet or the basal diet plus microalgae meal. On day 49 (ie, after dexamethasone administration), the microalgae meal was associated with lower baseline insulin and glucose concentrations and an improved modified insulin-to-glucose ratio for ponies, compared with results for the control diet. CONCLUSIONS AND CLINICAL RELEVANCE: Although the microalgae meal had no effect on clamp variables following dexamethasone treatment, it was associated with improved plasma glucose and insulin concentrations and insulin sensitivity estimates. A role for microalgae in the nutritional management of insulin-resistant horses warrants investigation.


Subject(s)
Diet/veterinary , Horse Diseases/prevention & control , Insulin Resistance , Animals , Blood Glucose/drug effects , Dexamethasone/administration & dosage , Dexamethasone/pharmacology , Female , Glucocorticoids/administration & dosage , Glucocorticoids/pharmacology , Glucose Clamp Technique/veterinary , Glucose Tolerance Test/veterinary , Horse Diseases/diet therapy , Horses , Insulin/blood , Male , Treatment Outcome
10.
Am J Physiol Regul Integr Comp Physiol ; 309(9): R1144-52, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26377563

ABSTRACT

Inflammatory lung diseases (e.g., pneumonia and acute respiratory distress syndrome) are associated with hyperglycemia, even in patients without a prior diagnosis of Type 2 diabetes. It is unknown whether the lung inflammation itself or the accompanying comorbidities contribute to the increased risk of hyperglycemia and insulin resistance. To investigate whether inflammatory signaling by airway epithelial cells can induce systemic insulin resistance, we used a line of doxycycline-inducible transgenic mice that express a constitutive activator of the NF-κB in airway epithelial cells. Airway inflammation with accompanying neutrophilic infiltration was induced with doxycycline over 5 days. Then, hyperinsulinemic-euglycemic clamps were performed in chronically catheterized, conscious mice to assess insulin action. Lung inflammation decreased the whole body glucose requirements and was associated with secondary activation of inflammation in multiple tissues. Metabolic changes occurred in the absence of hypoxemia. Lung inflammation markedly attenuated insulin-induced suppression of hepatic glucose production and moderately impaired insulin action in peripheral tissues. The hepatic Akt signaling pathway was intact, while hepatic markers of inflammation and plasma lactate were increased. As insulin signaling was intact, the inability of insulin to suppress glucose production in the liver could have been driven by the increase in lactate, which is a substrate for gluconeogenesis, or due to an inflammation-driven signal that is independent of Akt. Thus, localized airway inflammation that is observed during inflammatory lung diseases can contribute to systemic inflammation and insulin resistance.


Subject(s)
Blood Glucose/metabolism , Insulin Resistance , Insulin/blood , Lung/metabolism , NF-kappa B/metabolism , Pneumonia/metabolism , Animals , Asthma , Cytokines/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
11.
Cardiovasc Diabetol ; 14: 56, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25986700

ABSTRACT

BACKGROUND: Endotoxin (i.e. LPS) administration induces a robust inflammatory response with accompanying cardiovascular dysfunction and insulin resistance. Overabundance of nitric oxide (NO) contributes to the vascular dysfunction. However, inflammation itself also induces insulin resistance in skeletal muscle. We sought to investigate whether the cardiovascular dysfunction induced by increased NO availability without inflammatory stress can promote insulin resistance. Additionally, we examined the role of inducible nitric oxide synthase (iNOS or NOS2), the source of the increase in NO availability, in modulating LPS-induced decrease in insulin-stimulated muscle glucose uptake (MGU). METHODS: The impact of NO donor infusion on insulin-stimulated whole-body and muscle glucose uptake (hyperinsulinemic-euglycemic clamps), and the cardiovascular system was assessed in chronically catheterized, conscious mice wild-type (WT) mice. The impact of LPS on insulin action and the cardiovascular system were assessed in WT and global iNOS knockout (KO) mice. Tissue blood flow and cardiac function were assessed using microspheres and echocardiography, respectively. Insulin signaling activity, and gene expression of pro-inflammatory markers were also measured. RESULTS: NO donor infusion decreased mean arterial blood pressure, whole-body glucose requirements, and MGU in the absence of changes in skeletal muscle blood flow. LPS lowered mean arterial blood pressure and glucose requirements in WT mice, but not in iNOS KO mice. Lastly, despite an intact inflammatory response, iNOS KO mice were protected from LPS-mediated deficits in cardiac output. LPS impaired MGU in vivo, regardless of the presence of iNOS. However, ex vivo, insulin action in muscle obtained from LPS treated iNOS KO animals was protected. CONCLUSION: Nitric oxide excess and LPS impairs glycemic control by diminishing MGU. LPS impairs MGU by both the direct effect of inflammation on the myocyte, as well as by the indirect NO-driven cardiovascular dysfunction.


Subject(s)
Endothelium-Dependent Relaxing Factors/pharmacology , Glucose/metabolism , Heart/drug effects , Insulin Resistance , Lipopolysaccharides/pharmacology , Muscle, Skeletal/drug effects , Nitric Oxide Synthase Type II/genetics , Nitric Oxide/pharmacology , Animals , Arterial Pressure/drug effects , Cardiac Output/drug effects , Chemokine CCL2/genetics , Echocardiography , Gene Expression , Glucose Clamp Technique , Inflammation , Interleukin-6/genetics , Mice , Mice, Knockout , Microspheres , Muscle Cells/drug effects , Muscle Cells/immunology , Muscle Cells/metabolism , Muscle, Skeletal/immunology , Muscle, Skeletal/metabolism , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Regional Blood Flow/drug effects , Serpin E2/genetics , Tumor Necrosis Factor-alpha/genetics
12.
Parasitol Res ; 113(11): 4217-24, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25209615

ABSTRACT

Currently, diagnosis of Parascaris equorum infection in equids is limited to patent infections. The goals of this study were to culture P. equorum larvae in vitro and identify excretory-secretory (ES) products for prepatent diagnostic testing. Parascaris equorum L2/L3 larvae were hatched and cultured for up to 3 weeks for ES product collection. Fifth stage (L5) P. equorum were also cultured for ES product collection. Examination of ES fractions by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and silver stain revealed L2/L3 products ranging from 12-94 kDa and L5 products ranging from 12-189 kDa. Western blot analyses were conducted using polyclonal antibodies produced against P. equorum or Baylisascaris procyonis L2/L3 ES products, sera from rabbits inoculated with B. procyonis or Toxocara canis eggs, and sera from animals naturally infected with P. equorum or T. canis. Western blot results indicated parasite antigens migrating at 19 and 34 kDa may be useful for specifically detecting P. equorum infections.


Subject(s)
Antigens, Helminth/chemistry , Ascaridoidea/chemistry , Animals , Antibodies, Helminth/blood , Ascaridida Infections/diagnosis , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Horses/parasitology , In Vitro Techniques , Larva/chemistry , Rabbits
13.
Am J Physiol Endocrinol Metab ; 307(10): E896-905, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25205821

ABSTRACT

Inappropriate glucagon secretion contributes to hyperglycemia in inflammatory disease. Previous work implicates the proinflammatory cytokine interleukin-6 (IL-6) in glucagon secretion. IL-6-KO mice have a blunted glucagon response to lipopolysaccharide (LPS) that is restored by intravenous replacement of IL-6. Given that IL-6 has previously been demonstrated to have a transcriptional (i.e., slow) effect on glucagon secretion from islets, we hypothesized that the rapid increase in glucagon following LPS occurred by a faster mechanism, such as by action within the brain. Using chronically catheterized conscious mice, we have demonstrated that central IL-6 stimulates glucagon secretion uniquely in the presence of an accompanying stressor (hypoglycemia or LPS). Contrary to our hypothesis, however, we found that IL-6 amplifies glucagon secretion in two ways; IL-6 not only stimulates glucagon secretion via the brain but also by direct action on islets. Interestingly, IL-6 augments glucagon secretion from both sites only in the presence of an accompanying stressor (such as epinephrine). Given that both adrenergic tone and plasma IL-6 are elevated in multiple inflammatory diseases, the interactions of the IL-6 and catecholaminergic signaling pathways in regulating GCG secretion may contribute to our present understanding of these diseases.


Subject(s)
Brain/metabolism , Glucagon-Secreting Cells/metabolism , Glucagon/metabolism , Interleukin-6/genetics , Animals , Brain/drug effects , Epinephrine/pharmacology , Glucagon/drug effects , Glucose Clamp Technique , Hypoglycemia/metabolism , Interleukin-6/metabolism , Islets of Langerhans/metabolism , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Stress, Physiological , Sympathomimetics/pharmacology
14.
Pacing Clin Electrophysiol ; 32(3): 383-90, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19272070

ABSTRACT

BACKGROUND: The implantable cardioverter-defibrillator (ICD) is the established treatment for patients with a history of or at risk for sudden cardiac arrest. Patients receiving an ICD are diverse, and little is known regarding their preferences for support and education postimplantation. The purpose of this study was to examine race, gender, and age preferences for receiving support and education (e.g., written, verbal). METHODS: Participants (N = 108, 75% Caucasian, 74% male, age 65 +/- 11 years) completed a research team-designed survey at a regularly scheduled clinic visit with the cardiac electrophysiologist at an academic medical center or offsite clinic. Descriptive statistics, Pearson chi(2), and independent t-tests were conducted. RESULTS: The study demonstrates important associations between race, gender, and age with patient preferences for support and education with regard to ICD care. African Americans preferred written materials (P = 0.006) and a phone call with the cardiologist (P =0.036). Women preferred an ICD support group (P = 0.023), a phone call with the device nurse (P = 0.027), and a professional counselor (P = 0.049). Women's choice to receive education from their cardiologist approached significance (P = 0.055). Patients < or =67 years of age preferred to receive support via an Internet chat room with other ICD patients (P =0.036), and to receive education via an Internet Web site (P = 0.022). CONCLUSIONS: Findings suggest methods of providing better care to ICD patients by offering them support and educational materials in their preferred modality. These data can aid in optimizing clinical care. Incorporating assessments of individual preferences into future clinical trial design is desirable.


Subject(s)
Defibrillators, Implantable/statistics & numerical data , Heart Failure/epidemiology , Heart Failure/prevention & control , Patient Education as Topic/statistics & numerical data , Patient Satisfaction/statistics & numerical data , Adult , Age Distribution , Aged , Aged, 80 and over , Educational Status , Female , Humans , Male , Middle Aged , Prevalence , Rhode Island/epidemiology , Sex Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...