Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 52(5): 1469-84, 2007 Mar 07.
Article in English | MEDLINE | ID: mdl-17301465

ABSTRACT

The aim of this study is to investigate the effects of internal organ motion on IMRT treatment planning of prostate patients using a spatial dose gradient and probability density function. Spatial dose distributions were generated from a Pinnacle3 planning system using a co-planar, five-field intensity modulated radiation therapy (IMRT) technique. Five plans were created for each patient using equally spaced beams but shifting the angular displacement of the beam by 15 degree increments. Dose profiles taken through the isocentre in anterior-posterior (A-P), right-left (R-L) and superior-inferior (S-I) directions for IMRT plans were analysed by exporting RTOG file data from Pinnacle. The convolution of the 'static' dose distribution D0(x, y, z) and probability density function (PDF), denoted as P(x, y, z), was used to analyse the combined effect of repositioning error and internal organ motion. Organ motion leads to an enlarged beam penumbra. The amount of percentage mean dose deviation (PMDD) depends on the dose gradient and organ motion probability density function. Organ motion dose sensitivity was defined by the rate of change in PMDD with standard deviation of motion PDF and was found to increase with the maximum dose gradient in anterior, posterior, left and right directions. Due to common inferior and superior field borders of the field segments, the sharpest dose gradient will occur in the inferior or both superior and inferior penumbrae. Thus, prostate motion in the S-I direction produces the highest dose difference. The PMDD is within 2.5% when standard deviation is less than 5 mm, but the PMDD is over 2.5% in the inferior direction when standard deviation is higher than 5 mm in the inferior direction. Verification of prostate organ motion in the inferior directions is essential. The margin of the planning target volume (PTV) significantly impacts on the confidence of tumour control probability (TCP) and level of normal tissue complication probability (NTCP). Smaller margins help to reduce the dose to normal tissues, but may compromise the dose coverage of the PTV. Lower rectal NTCP can be achieved by either a smaller margin or a steeper dose gradient between PTV and rectum. With the same DVH control points, the rectum has lower complication in the seven-beam technique used in this study because of the steeper dose gradient between the target volume and rectum. The relationship between dose gradient and rectal complication can be used to evaluate IMRT treatment planning. The dose gradient analysis is a powerful tool to improve IMRT treatment plans and can be used for QA checking of treatment plans for prostate patients.


Subject(s)
Algorithms , Artifacts , Movement , Prostatic Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Data Interpretation, Statistical , Humans , Male , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity , Statistical Distributions
2.
Med Dosim ; 31(4): 249-58, 2006.
Article in English | MEDLINE | ID: mdl-17134664

ABSTRACT

The surface doses of 6- and 15-MV prostate intensity-modulated radiation therapy (IMRT) irradiations were measured and compared to those from a 15-MV prostate 4-beam box (FBB). IMRT plans (step-and-shoot technique) using 5, 7, and 9 beams with 6- and 15-MV photon beams were generated from a Pinnacle treatment planning system (version 6) using computed tomography (CT) scans from a Rando Phantom (ICRU Report 48). Metal oxide semiconductor field effect transistor detectors were used and placed on a transverse contour line along the Phantom surface at the central beam axis in the measurement. Our objectives were to investigate: (1) the contribution of the dynamic multileaf collimator (MLC) to the surface dose during the IMRT irradiation; (2) the effects of photon beam energy and number of beams used in the IMRT plan on the surface dose. The results showed that with the same number of beams used in the IMRT plan, the 6-MV irradiation gave more surface dose than that of 15 MV to the phantom. However, when the number of beams in the plan was increased, the surface dose difference between the above 2 photon energies became less. The average surface dose of the 15-MV IMRT irradiation increased with the number of beams in the plan, from 0.86% to 1.19%. Conversely, for 6 MV, the surface dose decreased from 1.33% to 1.24% as the beam number increased from 7 to 9. Comparing the 15-MV FBB and 6-MV IMRT plans with 2 Gy/fraction, the IMRT irradiations gave generally more surface dose, from 15% to 30%, depending on the number of beams in the plan. It was found that the increase in surface dose for the IMRT technique compared to the FBB plan was predominantly due to the number of beams and the calculated monitor units required to deliver the same dose at the isocenter in the plans. The head variation due to the dynamic MLC movement changing the surface dose distribution on the patient was reflected by the IMRT dose-intensity map. Although prostate IMRT in this study had an average higher surface dose than that of FBB, the more even distribution of relatively lower surface dose in IMRT field could avoid the big dose peaks at the surface positions directly under the FBB fields. Such an even and low surface dose distribution surrounding the patient in IMRT is believed to give less skin complication than that of FBB with the same prescribed dose.


Subject(s)
Prostatic Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Humans , Male , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
3.
Med Phys ; 33(5): 1250-8, 2006 May.
Article in English | MEDLINE | ID: mdl-16752559

ABSTRACT

The normal tissue complication probability (NTCP) is a predictor of radiobiological effect for organs at risk (OAR). The calculation of the NTCP is based on the dose-volume-histogram (DVH) which is generated by the treatment planning system after calculation of the 3D dose distribution. Including the NTCP in the objective function for intensity modulated radiation therapy (IMRT) plan optimization would make the planning more effective in reducing the postradiation effects. However, doing so would lengthen the total planning time. The purpose of this work is to establish a method for NTCP determination, independent of a DVH calculation, as a quality assurance check and also as a mean of improving the treatment planning efficiency. In the study, the CTs of ten randomly selected prostate patients were used. IMRT optimization was performed with a PINNACLE3 V 6.2b planning system, using planning target volume (PTV) with margins in the range of 2 to 10 mm. The DVH control points of the PTV and OAR were adapted from the prescriptions of Radiation Therapy Oncology Group protocol P-0126 for an escalated prescribed dose of 82 Gy. This paper presents a new model for the determination of the rectal NTCP (R(NTCP)). The method uses a special function, named GVN (from Gy, Volume, NTCP), which describes the R(NTCP) if 1 cm3 of the volume of intersection of the PTV and rectum (R(int)) is irradiated uniformly by a dose of 1 Gy. The function was "geometrically" normalized using a prostate-prostate ratio (PPR) of the patients' prostates. A correction of the R(NTCP) for different prescribed doses, ranging from 70 to 82 Gy, was employed in our model. The argument of the normalized function is the R(int), and parameters are the prescribed dose, prostate volume, PTV margin, and PPR. The R(NTCPs) of another group of patients were calculated by the new method and the resulting difference was < +/- 5% in comparison to the NTCP calculated by the PINNACLE3 software where Kutcher's dose-response model for NTCP calculation is adopted.


Subject(s)
Models, Biological , Prostatic Neoplasms/physiopathology , Prostatic Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Algorithms , Body Burden , Computer Simulation , Humans , Male , Models, Statistical , Radiation Dosage , Relative Biological Effectiveness , Software
4.
Phys Med Biol ; 51(3): 637-52, 2006 Feb 07.
Article in English | MEDLINE | ID: mdl-16424586

ABSTRACT

For the step-and-shoot intensity-modulated radiation therapy (IMRT) technique, the combination of high dose rate, multiple beam segments and low dose per segment can lead to significant differences between the planned dose and the dose delivered to the patient. In this technique, a dose delivery inaccuracy known as the 'overshoot' effect is caused by the dose servo control system. This typically occurs in the first and last beam segments and causes an over- and underdose, respectively. Some dose positional error in the segment sequence is also possible there. Commercial ionization chambers (RK-type) and radiographic Kodak films were used for the measurements. The reported results were obtained using the Pinnacle(3)-V6.2 treatment planning system and a Varian Clinac 21 EX linear accelerator equipped with a 120-leaf Millennium MLC. The dose inaccuracy measurements were based on the comparison of the dose and profiles for reference fields and fields irradiated with the step-and-shoot technique. For our linear accelerators, an 'overshoot' effect ranging from 0.1 to 0.6 MU was found, corresponding to a dose rate from 100 to 600 MU min(-1), respectively. For segments with off-axis distances from 0 to 5.5 cm with >3.5 MU per segment and all dose rates, a MLC leaf-position error of <1 mm was measured. For segments with an off-axis distance of 9.5 cm, a positional error >2 mm was measured for 600 MU min(-1) and 1 MU per segment. The purpose of this study was to find a correction method for segmental dose errors caused by the 'overshoot' effect when small monitor unit and high dose rate are used. To better represent the fluctuation of the segment doses in the beam, a dose ratio between reference and step-and-shoot irradiated fields was defined. A method for the correction of segment dose inaccuracies and a quality assurance programme for the 'overshoot' effect were developed. The ordering of the biggest segment shape in the segment sequence was studied for ten randomly selected prostate patients planned for IMRT. The results of this work can be used to improve the agreement between the planned and delivered doses for IMRT.


Subject(s)
Radiometry/methods , Radiotherapy, Intensity-Modulated/methods , Film Dosimetry , Humans , Ions , Male , Particle Accelerators , Prostatic Neoplasms/radiotherapy , Radiation Dosage , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...