Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
UCL Open Environ ; 5: e066, 2023.
Article in English | MEDLINE | ID: mdl-38033507

ABSTRACT

Addressing the large carbon footprint of conferences such as the United Nations Climate Change Convention Conference of the Parties (COP) will be important for maintaining public confidence in climate policy. Transparency is also a vital aspect of creating equitable outcomes in climate policies, as those most likely to be affected or who can create change on the ground are often unable to attend in person because of the high financial costs as well as having a large carbon footprint. The selection of host locations for the regular meetings of the UN Climate Change Convention is based on a rotation amongst the five UN regions, which for 2022 was Africa. Here, we present a carbon footprint calculator for travel to COP 27 in Sharm El-Sheikh, Egypt, weighing the benefits of certain routes and modes of transport. The calculator demonstrates the well-known carbon efficiency of coach and rail over flights but shows that these benefits were partly diminished in the case of COP 27 due to insufficient transport links from Europe to the conference location. However, we also highlight some of the benefits of hosting a COP in the Global South, particularly in the context of climate justice. Users of the calculator are invited to consider all their options for travel and acknowledge the issue of climate justice through careful selection of carbon offsets.

2.
UCL Open Environ ; 5: e062, 2023.
Article in English | MEDLINE | ID: mdl-37671394

ABSTRACT

Climate justice is not just a financial transaction to protect the environment. It needs to be seen as the protection of the most vulnerable in society after centuries of resource exploitation. African countries disproportionately face impacts of climate change on their environments, their economies, their resources and their infrastructure. This leads to greater vulnerability and increased exposure to the negative effects of a changing climate. In this article, we highlight the importance of climate justice and its role within the United Nations negotiations, and ultimately in concrete action. We discuss current climate impacts across key sectors in the African region, with a focus on health, infrastructure, food and water scarcity, energy and finance. All sectors are affected by climate change. They are interconnected and under threat. This triggers a ripple effect, where threats in one sector have a knock-on effect on other sectors. We find that the current set of intergovernmental institutions have failed to adequately address climate justice. We also contend that a siloed approach to climate action has proven to be ineffective. As we head towards the next set of negotiations (COP27), this paper argues that the economic and social conditions in Africa can be addressed through financial and collaborative support for adaptation and localised solutions, but that this will only be achieved if climate justice is prioritised by the decision makers. This needs to include a global-scale transition in how climate finance is assessed and accessed. Climate justice underpins real, effective and sustainable solutions for climate action in Africa.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120146, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34274684

ABSTRACT

Spectroscopic studies into the identification and characterisation of psittacofulvins were performed using resonance Raman spectroscopy. It was confirmed that red colour regions display Raman band wavenumber shifts with excitation wavelength, whereas yellow regions do not. There was, however, one yellow region (Calyptorhynchus banksii) that did display wavenumber shifting with excitation wavelength. The data in Raman band wavenumber shifting is observed may be interpreted as probing sample volumes in which a number of dyes of differing length are present in which comparative resonance Raman signals select out the dyes to differing extents depending on their absorption profile, structurally changes between the ground and excited state and the Raman scattering of particular modes. The observed spectral features suggest the presence of a psittacofulvin with greater conjugation than has been reported previously.


Subject(s)
Spectrum Analysis, Raman
4.
Sustainability ; 13(10): 5568, 2021 May 02.
Article in English | MEDLINE | ID: mdl-34164161

ABSTRACT

Dietary transitions, such as eliminating meat consumption, have been proposed as one way to reduce the climate impact of the global and regional food systems. However, it should be ensured that replacement diets are indeed nutritious and that climate benefits are accurately accounted for. This study uses New Zealand food consumption as a case study for exploring the cumulative climate impact of adopting the national dietary guidelines and the substitution of meat from hypothetical diets. The new GWP* metric is used as it was designed to better reflect the climate impacts of the release of methane than the de facto standard 100-year Global Warming Potential metric (GWP100). A transition at age 25 to the hypothetical dietary guideline diet reduces cumulative warming associated with diet by 7 to 9% at the 100th year compared with consuming the average New Zealand diet. The reduction in diet-related cumulative warming from the transition to a hypothetical meat-substituted diet varied between 12 and 15%. This is equivalent to reducing an average individual's lifetime warming contribution by 2 to 4%. General improvements are achieved for nutrient intakes by adopting the dietary guidelines compared with the average New Zealand diet; however, the substitution of meat items results in characteristic nutrient differences, and these differences must be considered alongside changes in emission profiles.

5.
Dalton Trans ; 48(41): 15713-15722, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31549707

ABSTRACT

In this study, we present two ruthenium(ii) diimine complexes appended with ferrocene which show metal to ligand charge transfer 3MLCT emission lifetimes around 630 ns. We also present a similar complex with two ferrocene units which has decreased emission. These complexes have been studied by electrochemical, electronic absorption, and Raman, resonance Raman and transient resonance Raman means, coupled with density functional theoretical approaches. For these systems, the optical spectra are dominated by a low energy ruthenium(ii) MLCT transition; which can be modulated by the presence of pendant ferrocene units and the extent of conjugation of the ferrocenyl bipyridine backbone. Tuning of the lowest energy transition in terms of intensity (4 to 18 × 10-3 M-1 cm-1) and energy (535 to 563 nm) was achieved by these means.

6.
Inorg Chem ; 58(15): 9785-9795, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31314505

ABSTRACT

A transition-metal-based donor-(linker)-acceptor system can produce long-lived charge transfer excited states using visible excitation wavelengths. The ground- and excited-state photophysical properties of a series of [ReCl(CO)3(dppz-(linker)-TPA)] complexes, with varying donor and acceptor energies, have been systematically studied using spectroscopic techniques (both vibrational and electronic) supported by computational chemistry. The long-lived excited state is 3ILCT in nature for all complexes studied, characterized through transient absorption and emission, transient resonance Raman (TR2), and time-resolved infrared (TRIR) spectroscopy and TDDFT calculations. Modulation of the donor and acceptor energies results in changes of the 3ILCT lifetime by 1 order of magnitude, ranging from 6.1(±1) µs when a diphenylamine donor is used to 0.6(±0.2) µs when a triazole linker and triphenylamine donor is used. The excited-state lifetime may be rationalized by consideration of the driving force within the framework of Marcus theory and appears insensitive to the nature of the linker.

7.
J Phys Chem A ; 123(28): 5957-5968, 2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31287304

ABSTRACT

In this study, we show that the "Michler's base" motif can be combined in a donor-acceptor arrangement with a range of acceptor units (indandione, indandione with cyano substituents, barbituric acid, or rhodanine) to give photophysical properties that are dominated by delocalized excited states. By changing the acceptor unit and by altering the planarity of this system, it is possible to tune the low-energy absorption feature in terms of intensity from 23 000 to 67 000 M-1 cm-1 and energy between 500 and 700 nm. Resonance Raman spectroscopy and time-dependent density functional theory indicate that this absorption feature has two underlying transitions: a weaker charge-transfer transition around 500 nm and a strong mixed or delocalized transition between 550 and 700 nm. Generally, these compounds are not strongly emissive; however, dual emission is observed, and the relative intensity of the two states can be modulated by solvent polarity. The energy of these emissive states does not correlate with the Lippert-Mataga analysis in which the Stokes shift is related to the solvent polarity (Δf).

8.
R Soc Open Sci ; 5(7): 172010, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30109049

ABSTRACT

Variation in animal coloration is often viewed as the result of chemically distinct pigments conferring different hues. The role of molecular environment on hue tends to be overlooked as analyses are mostly performed on free pigments extracted from the integument. Here we analysed psittacofulvin pigments within parrot feathers to explore whether the in situ organization of pigments may have an effect on hue. Resonance Raman spectra from a red region of a yellow-naped amazon Amazona auropalliata tail feather show frequency dispersion, a phenomenon that is related to the presence of a range of molecular conformations (and multiple chromophores) in the pigment, whereas spectra from a yellow region on the same feather do not show the same evidence for multiple chromophores. Our findings are consistent with non-isomeric psittacofulvin pigments behaving as a single chromophore in yellow feather barbs, which implies that psittacofulvins are dispersed into a structurally disordered mixture in yellow feathers compared with red feathers. Frequency dispersion in red barbs may instead indicate that pigments are structurally organized through molecule-molecule interactions. Major differences in the hues of parrot feathers are thus associated with differences in the organization of pigments within feathers.

9.
Molecules ; 23(8)2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30110981

ABSTRACT

To realise useful control over molecular motion in the future an extensive toolbox of both actionable molecules and stimuli-responsive units must be developed. Previously, our laboratory has reported 1,1'-disubstituted ferrocene (Fc) rotor units which assume a contracted/π-stacked conformation until complexation of cationic metal ions causes rotation about the Ferrocene (Fc) molecular 'ball-bearing'. Herein, we explore the potential of using the photochemical ejection of [Ru(2,2'-bipyridyl)2]2+ units as a stimulus for the rotational contraction of new ferrocene rotor units. Fc rotors with both 'regular' and 'inverse' 2-pyridyl-1,2,3-triazole binding pockets and their corresponding [Ru(2,2'-bipyridyl)2]2+ complexes were synthesised. The rotors and complexes were characterised using nuclear magnetic resonance (NMR) and ultraviolet (UV)-visible spectroscopies, Electro-Spray Ionisation Mass Spectrometry (ESI⁻MS), and electrochemistry. The 1,1'-disubstituted Fc ligands were shown to π-stack both in solution and solid state. Density Functional Theory (DFT) calculations (CAM-B3LYP/6-31G(d)) support the notion that complexation to [Ru(2,2'-bipyridyl)2]2+ caused a rotation from the syn- to the anti-conformation. Upon photo-irradiation with UV light (254 nm), photo-ejection of the [Ru(2,2'-bipyridyl)2(CH3CN)2]2+ units in acetonitrile was observed. The re-complexation of the [Ru(2,2'-bipyridyl)2]2+ units could be achieved using acetone as the reaction solvent. However, the process was exceedingly slowly. Additionally, the Fc ligands slowly decomposed when exposed to UV irradiation meaning that only one extension and contraction cycle could be completed.


Subject(s)
Ferrous Compounds/chemistry , Light , Metallocenes/chemistry , Photochemical Processes , Ruthenium/chemistry , Triazoles/chemistry , Electrochemistry , Ferrous Compounds/chemical synthesis , Ligands , Magnetic Resonance Spectroscopy , Metallocenes/chemical synthesis , Molecular Structure , Photochemistry , Spectrophotometry, Ultraviolet
10.
J Phys Chem A ; 122(40): 7991-8006, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30044631

ABSTRACT

The synthesis, spectroscopic characterization, and computational modeling of seven benzo[ c][2,1,3]thiadiazole-based donor-acceptor dyes is reported. Using a range of linker units, it is possible to alter the lowest energy transition in terms of intensity (from 8000 to 25000 L mol-1 cm-1) and wavelength (from 350 to 430 nm). Resonance Raman spectroscopy was used in concert with DFT calculations to indicate that the linker unit participates in charge transfer processes. In each compound the excited state behavior appears to be primarily described by a BTD●--Linker-TPA●+ state. Stokes shift versus solvent parameter gradients are on the order of 15000 cm-1, indicating Δµ values are large. Dual emission is observed in six of the seven compounds and it can be modulated as a function of solvent. TD-DFT calculations, including excited state optimizations (linear response and state specific), indicate that the lowest energy emission is charge transfer in character. The high energy emissive state is assigned as n-π*. In nonpolar solvents, only the low energy charge transfer emission band is observed and this band generally has a high quantum yield (Φ ≈ 0.9). For compounds with phenyl and triazolyl linkers, in polar solvents only the high energy n-π* emission is observed. The high energy n-π* emission has a low quantum yield regardless of solvent.

11.
Molecules ; 23(2)2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29443935

ABSTRACT

A series of eight carbazole-cyanoacrylate based donor-acceptor dyes were studied. Within the series the influence of modifying the thiophene bridge, linking donor and acceptor and a change in the nature of the acceptor, from acid to ester, was explored. In this joint experimental and computational study we have used electronic absorbance and emission spectroscopies, Raman spectroscopy and computational modeling (density functional theory). From these studies it was found that extending the bridge length allowed the lowest energy transition to be systematically red shifted by 0.12 eV, allowing for limited tuning of the absorption of dyes using this structural motif. Using the aforementioned techniques we demonstrate that this transition is charge transfer in nature. Furthermore, the extent of charge transfer between donor and acceptor decreases with increasing bridge length and the bridge plays a smaller role in electronically mixing with the acceptor as it is extended.


Subject(s)
Carbazoles/chemistry , Coloring Agents/chemistry , Cyanoacrylates/chemistry , Computational Biology , Electrons , Molecular Structure , Spectrum Analysis, Raman
12.
RSC Adv ; 8(52): 29505-29512, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-35547291

ABSTRACT

We present a simple and effective way of using metal and metal-ligand modifications to tune the electrochemical and optical properties of conducting polymers. To that end, a polyterthiophene functionalized with terpyridine moieties was synthesized and then the resulting film's surface or bulk was modified with different metal ions, namely Fe2+, Zn2+ and Cu2+ and terpyridine. The modification of the terpyridine functionalized polyterthiophene film by Fe2+ increased the absorptivity and electrochemical capacitance of the conducting polymer, and improved its conjugation. Further modification by Zn2+ and Cu2+ resulted in dramatically different spectroelectrochemical properties of the film. Moreover, the influence of the solvents (ACN and 1 : 1 ACN : H2O) in conjunction with the metal ion applied for the modification was found crucial for the electrochemical and optical properties of the films.

13.
Chem Commun (Camb) ; 53(54): 7628-7631, 2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28640291

ABSTRACT

A 2,2'-bipyridine-appended bis(ferrocene) three tiered molecular folding ruler, can be switched from a folded conformation to an extended conformation by the addition of [Cu(CH3CN)4](PF6) and 6,6'-dimesityl-2,2'-bipyridine. This extension and contraction process could be triggered either chemically or electrochemically and was reversible.

14.
Chem Sci ; 8(1): 316-324, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-28261441

ABSTRACT

Natural selection in photosynthesis has engineered tetrapyrrole based, nanometer scale, light harvesting and energy capture in light-induced charge separation. By designing and creating nanometer scale artificial light harvesting and charge separating proteins, we have the opportunity to reengineer and overcome the limitations of natural selection to extend energy capture to new wavelengths and to tailor efficient systems that better meet human as opposed to cellular energetic needs. While tetrapyrrole cofactor incorporation in natural proteins is complex and often assisted by accessory proteins for cofactor transport and insertion, artificial protein functionalization relies on a practical understanding of the basic physical chemistry of protein and cofactors that drive nanometer scale self-assembly. Patterning and balancing of hydrophobic and hydrophilic tetrapyrrole substituents is critical to avoid natural or synthetic porphyrin and chlorin aggregation in aqueous media and speed cofactor partitioning into the non-polar core of a man-made water soluble protein designed according to elementary first principles of protein folding. This partitioning is followed by site-specific anchoring of tetrapyrroles to histidine ligands strategically placed for design control of rates and efficiencies of light energy and electron transfer while orienting at least one polar group towards the aqueous phase.

15.
J Am Chem Soc ; 138(33): 10578-85, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27463413

ABSTRACT

Metallosupramolecular architectures are beginning to be exploited for a range of applications including drug delivery, catalysis, molecular recognition, and sensing. For the most part these achievements have been made with high-symmetry metallosupramolecular architectures composed of just one type of ligand and metal ion. Recently, considerable efforts have been made to generate metallosupramolecular architectures that are made up of multiple different ligands and/or metals ions in order to obtain more complex systems with new properties. Herein we show that the addition of an electron-rich 2-amino-substituted tripyridyl ligand, 2,6-bis(pyridin-3-ylethynyl)pyridine (2A-tripy), to a solution of the [Pd2(tripy)4](4+) cage resulted in the clean generation of a heteroleptic [Pd2(tripy)2(2A-tripy)2](4+) architecture. The formation of the mixed-ligand cage [Pd2(tripy)2(2A-tripy)2](4+) was confirmed using (1)H NMR spectroscopy, diffusion-ordered spectroscopy, and rotating-frame nuclear Overhauser effect spectroscopy and high-resolution electrospray ionization mass spectrometry. Density functional theory calculations suggested the cis isomer was more stable that the trans isomer. Additionally, the calculations indicated that the heteroleptic palladium(II) cages are kinetically metastable intermediates rather than the thermodynamic product of the reaction. Competition experiments supported that finding and showed the cages are long-lived in solution at room temperature. Finally, it was shown that the addition of 2A-tripy to a range of preformed [Pd2(Ltripy)4](4+) cages cleanly generated the mixed-ligand systems. Three other systems displaying different exo and endo functionalities within the cage assembly were generated, suggesting that this method could be applied to synthesize a range of highly functionalized heteroleptic cis-[Pd2(La)2(Lb)2](4+) cages.

16.
Inorg Chem ; 55(16): 8184-92, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27459334

ABSTRACT

Optical characterization and computational modeling of three ferrocene-appended ethynyl-2,2'-bipyridine ligands and the associated heteroleptic copper(I) complexes of 6,6'-dimesityl-2,2'-bipyridine are reported. These dyes have been studied using electrochemical analysis, electronic absorption, and Raman and resonance Raman spectroscopies, coupled with density functional theoretical approaches. For the complexes, optical spectra are dominated by a low energy copper(I) centered metal to ligand charge transfer (MLCT) transition; this is modulated by the presence of pendant ferrocene units and the extent of conjugation of the ferrocenyl bipyridine backbone. Electronic tuning due to ferrocene is shown to result in a redshift of the MCLT transition of up to ∼0.2 eV, while an elongation of conjugation appears to result in an increased MLCT intensity of around 50%.

17.
Pharm Res ; 33(7): 1752-68, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27059921

ABSTRACT

PURPOSE: Isomalt is a sugar alcohol used as an excipient in commercially available solid oral dosage forms. The potential of isomalt as a novel freeze-drying excipient was studied in order to increase knowledge of the behavior of isomalt when it is freeze-dried. METHODS: Isomalt was freeze-dried in four different diastereomer compositions and its physical stability was investigated with differential scanning calorimetry, Fourier-transform infrared and Raman spectroscopy, X-ray powder diffraction, Karl-Fischer titration and thermogravimetric analysis in order to verify the solid state form of isomalt after freeze-drying and observe any changes occurring during storage in three different relative humidity conditions. RESULTS: Isomalt was successfully transformed into the amorphous form with freeze-drying and three diastereomer combinations remained stable as amorphous during storage; one of the diastereomer compositions showed signs of physical instability when stored in the highest relative humidity condition. The four different crystalline diastereomer mixtures showed specific identifiable solid state properties. CONCLUSIONS: Isomalt was shown to be a suitable excipient for freeze-drying. Preferably a mixture of the diastereomers should be used, as the mixture containing only one of the isomers showed physical instability. A mixture containing a 1:1 ratio of the two diastereomers showed the best physical stability in the amorphous form.


Subject(s)
Disaccharides/chemistry , Sugar Alcohols/chemistry , Calorimetry, Differential Scanning/methods , Chemistry, Pharmaceutical/methods , Drug Stability , Excipients/chemistry , Freeze Drying/methods , Humidity , Powders/chemistry , Solubility , X-Ray Diffraction/methods
18.
J Phys Chem A ; 120(11): 1853-66, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26918584

ABSTRACT

The synthesis, optical characterization and computational modeling of seven benzo[c][1,2,5]thiadiazole (BTD) donor-acceptor dyes are reported. These dyes have been studied using electrochemical analysis, electronic absorption, emission, and Raman and resonance Raman spectroscopies coupled with various density functional theoretical approaches. Crystal structure geometries on a number of these compounds are also reported. The optical spectra are dominated by low energy charge-transfer states; this may be modulated by the coupling between donor and acceptor through variation in donor energy, variation of the donor-acceptor torsion angle, and incorporation of an insulating bridge. These modifications result in a perturbation of the excitation energy for this charge-transfer transition of up to ∼2000 cm(-1). Emission spectra exhibit significant solvatochromisim, with Lippert-Mataga analysis yielding Δµ between 8 and 33 D. Predicted λmax, ε, and Raman cross sections calculated by M06L, B3LYP, PBE0, M06, CAM-B3LYP, and ωB97XD DFT functionals were compared to experimental results and analyzed using multivariate analysis, which shows that hybrid functionals with 20-27% HF best predict ground state absorption, while long-range corrected functionals best predict molecular polarizabilities.

19.
Chem Sci ; 7(6): 3506-3516, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-29997843

ABSTRACT

Reduction kinetics of oxidized dyes absorbed on semiconductor surfaces and immersed in redox active electrolytes has been mainly modeled based on the free energy difference between the oxidation potential of the dye and the redox potential of the electrolyte. Only a few mechanisms have been demonstrated to enhance the kinetics by other means. In this work, the rate constant of the reduction of oxidized porphyrin dye is enhanced by attaching non-conjugated carbazole triphenylamine moiety using iodine/triiodide and tris(2,2'-bispyridinium)cobalt II/III electrolytes. These results are obtained using transient absorption spectroscopy by selectively probing the regeneration kinetics at the porphyrin radical cation and the carbazole triphenylamine radical cation absorption wavelengths. The enhancement in the reduction kinetics is not attributed to changes in the driving force, but to the more exposed dye cation radical orbitals of the dichromophoric dye. The results are important for the development of high efficiency photo-electrochemical devices with minimalized energy loss at electron transfer interfaces.

20.
Inorg Chem ; 53(6): 3126-40, 2014 Mar 17.
Article in English | MEDLINE | ID: mdl-24559053

ABSTRACT

A series of dipyrido[3,2-a:2',3'-c]phenazine (dppz)-based ligands with electron-withdrawing substituents and their [Re(CO)3(L)Cl] and [Re(CO)3(L)(py)]PF6 complexes have been studied using Raman, resonance Raman, and transient resonance Raman (TR(2)) and time-resolved infrared (TRIR) spectroscopic techinques in conjunction with computational chemistry as well as electrochemical studies, emission, and absorption of ground and excited states. DFT (B3LYP) frequency calculations show good agreement with nonresonant Raman spectra, which allowed these to be used to identify phenanthroline, phenazine, and delocalized modes. These band assignments were used to establish the nature of chromophores active in resonance Raman spectra, probed with wavelengths between 350.7 and 457.9 nm. X-ray crystallography of [Re(CO)3(dppzBr2)Cl] and [Re(CO)3(dppzBr)(py)]PF6 showed these crystallize in space groups triclinic P1 and monoclinic P2(1/n), respectively. Electrochemical studies showed that substituents have a strong effect on the phenazine MO, changing the reduction potential by 200 mV. Transient absorption studies showed that generally the [Re(CO)3(L)(py)]PF6 complexes had longer lifetimes than the corresponding [Re(CO)3(L)Cl] complexes; the probed state is likely to be (3)π → π* (phz) in nature. TR(2) spectra of the ligands provided a marker for the triplet π → π* state, and the TR(2) spectra of the complexes suggest an intraligand (IL) π,π* state for [Re(CO)3(L)(py)](+) complexes, and a potentially mixed IL/MLCT state for [Re(CO)3(L)Cl] complexes. TRIR spectroscopy is more definitive with THEXI state assignments, and analysis of the metal-carbonyl region (1800-2100 cm(-1)) on the picosecond and nanosecond time scales indicates the formation of MLCT(phen/phz) states for all [Re(CO)3(L)Cl] complexes, and IL π → π* (phen) states for all [Re(CO)3(L)(py)](+) complexes, with all but [Re(CO)3(dppzBr(CF3))(py)](+) showing some contribution from an MLCT(phen) state also.

SELECTION OF CITATIONS
SEARCH DETAIL
...