Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 97(10): 3284-3293, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27976411

ABSTRACT

BACKGROUND: Detailed knowledge of the community structure of methanogens is essential for amelioration of methane emission from livestock species. Several studies have indicated that predominant methanogens of buffalo rumen are different from those in cattle. However, predominant genera of methanogens reported by individual studies varied primarily because of limited scope of sampling, sequencing of limited number of sequences and potential PCR bias in individual studies. In this study, the collective comparative diversity of methanogenic archaea in the rumen of cattle and buffaloes was examined by performing a meta-analysis of all the 16S rRNA (rrn) sequences deposited in GenBank. RESULTS: Ruminal methanogen sequences of buffalo were clustered into 900 species-level operational taxonomic units (OTUs), and ruminal methanogen sequences of cattle were clustered into 1522 species level OTUs. The number of species-level OTUs shared between cattle and buffaloes was 229 (10.4% of all OTUs), comprising 1746 sequences (27% of the total 6447 sequences). According to taxonomic classification by three different classifiers, Methanobrevibacter was found to be the most predominant genus both in cattle (69-71% of sequences) as well as buffaloes (65.1-68.9% of sequences). Percentage of Methanomicrobium was much higher (P < 0.05) in the case of buffalo (18%) than that of cattle (4.5%). On the other hand, percentages of Methanosphaera- and Methanomassiliicoccus-like methanogens were much higher (P < 0.05) in cattle than in buffaloes. CONCLUSION: This study indicated that there is a substantial difference in community structure of ruminal methanogens of cattle and buffaloes. The study has also indicated that the percent of species-level operational taxonomic units shared between cattle and buffalo is very low, and thus host species-specific methane mitigation strategies need to be developed for cattle and buffaloes. © 2016 Society of Chemical Industry.


Subject(s)
Archaea/isolation & purification , Buffaloes/microbiology , Cattle/microbiology , Gastrointestinal Microbiome , Rumen/microbiology , Animals , Archaea/classification , Archaea/genetics , Archaea/growth & development , Phylogeny
2.
Vet World ; 8(4): 512-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-27047125

ABSTRACT

AIM: The objective of the present study was to compare serum as well as follicular fluid (FF) biochemical and hormonal profiles along with hematological parameters in postpartum estrus, anestrus, and cystic buffaloes. MATERIALS AND METHODS: Postpartum buffaloes were selected in three different groups (within 40-60 days of parturition at estrus-Group-I, postpartum >90 days at anestrum-Group-II, and postpartum cystic buffaloes in Group III). The animals selected were examined for follicular wave dynamics by routine trans-rectal ultrasonography and FF was collected by transvaginal ultrasound-guided ovum pick up technique. All hematological and biochemical parameters were analyzed by automatic analyzers while hormonal profiles analyzed by commercially available ELISA kits. RESULTS: In the present investigation, estrum and anestrum animal differ significantly in hemoglobin levels. Serum estradiol differs significantly in estrus and anestrus while no significant difference in progesterone concentration was noted among all three stages. The results of our study suggest that significant higher increase in total protein (TP), calcium and glucose values in estrum while urea, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase significantly higher in anestrum animals. CONCLUSION: The conclusion of the present study is that TP and albumin, calcium, urea, glucose affects oocyte development and quality.

SELECTION OF CITATIONS
SEARCH DETAIL
...