Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 92(6): 1186-95, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12761808

ABSTRACT

Systems that can be polymerized in situ upon exposure to light radiation may have significant applications in tissue engineering and drug delivery. However, the light-induced polymerization step, which is the requisite for this technology, could be potentially deleterious to sensitive bioactive agents (e.g., enzymes, cytokines, matrix metalloproteinases) being entrapped. In this study, a method to protect sensitive molecules from a light-induced polymerizing environment is proposed. This method is based on the idea that nonaccessible substances cannot interact with the polymerizing species. To examine this concept, two model enzymes-namely, horseradish peroxidase and alpha-glucosidase-were protected by gelatin-based wet granulation and incorporated within a cured polyethylene glycol dimethacrylate, a photocurable monomer, under different conditions. Unprotected enzymes were used as controls. Enzymes were then allowed to diffuse out of the polymerized matrices. The activity and total enzyme recovered from these matrices by passive diffusion were compared to ascertain the extent of activity retention. Matrix assisted laser desorption ionization mass spectrometry combined with time of flight mass spectrometry (MALDI-TOF) was used to determine changes in enzyme molecular weight. During the first 24 h of diffusion from the polymerized matrices, unprotected enzymes consistently showed a loss of activity ranging from 10-66%, depending on the matrix composition and enzyme properties. In contrast, protected enzymes retained over 94% of their activity irrespective of the experimental setting. The loss of activity appears to be a direct consequence of the polymerizing environment.


Subject(s)
Acrylates/chemistry , Horseradish Peroxidase/radiation effects , Light , Polyethylene Glycols/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , alpha-Glucosidases/radiation effects , Chemistry, Pharmaceutical , Enzyme Stability , Horseradish Peroxidase/chemistry , Methacrylates , Molecular Weight , Technology, Pharmaceutical , Time Factors , alpha-Glucosidases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...