Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mycology ; 14(2): 108-132, 2023.
Article in English | MEDLINE | ID: mdl-37152850

ABSTRACT

The endophytic fungal community associated with leaves of Ficus carica L. (Moraceae) from Argentina was investigated. Fifteen fungal isolates were isolated and identified by molecular methods into the genera Alternaria, Cladosporium, Curvularia, Diaporthe, Epicoccum, Myrothecium, Neofusicoccum, Nigrospora, Preussia and Ustilago. Cladosporium cladosporioides and Curvularia lunata were the most frequently isolated species. The fungal metabolic profiles were obtained by automated TLC and NMR and analysed by PC Analysis. Antifungal and antibacterial activity was assessed by bioautographic assays. In addition, the biotransforming ability of the fungal isolates was tested on F. carica extracts. Five isolates (33.3%) exhibited inhibitory activity against at least one of the microorganisms tested. Most of the fungal endophytes were able to metabolise the flavonoid rutin 1, and the coumarin psoralen 3 present in F. carica extracts. Further investigations of the psoralen biotransforming ability performed by the selected endophyte Alternaria alternata F8 showed the accumulation of the 6,7-furan-hydrocoumaric acid derivative 4 as the main biotransformation product. Our results corroborate that F. carica can live symbiotically with rich and diverse endophytic communities adding insights about their ecological interactions.

2.
World J Microbiol Biotechnol ; 37(1): 14, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33394165

ABSTRACT

Chickpea (Cicer arietinum L., Fabaceae) is the second most important legume after common bean (Phaseolus vulgaris L., Fabaceae) and third in production among the legumes grains worldwide. Ascochyta blight and Fusarium wilt are among the main fungal infections which cause the major losses of chickpea crop. In this work we report the phyto-pathogen controlling properties of 24 endophyte Phomopsis/Diaporthe isolates on the chickpea fungal pathogens Ascochyta rabiei, Fusarium oxysporum and Fusarium solani. The Phomopsis/Diaporthe strains were isolated amongst a total of 62 endophytic fungi from the aerial parts of the herbaceous perennial American plant Peperomia obtusifolia (Piperaceae) along with Fusarium, Septoria, Colletotrichum, Alternaria and Roussoella genera among others. Phomopsis/Diaporthe isolates were identified as Diaporthe infecunda (12 isolates), Diaporthe sackstoni (1 isolate), Diaporthe cf. brasiliensis (4 isolates) and Phomopsis cf. tuberivora (7 isolates). All the Phomopsis/Diaporthe strains antagonized A. rabiei strain AR2 with a mean of inhibition (% I) of 86.59 ± 1.49% in dual cultures. The metabolic characterization of the Phomopsis/Diaporthe strains showed groups in three clusters which were in agreement with the taxonomic identification. Bioautographic evaluation of organic extracts showed that those of D. cf. brasiliensis and D. infecunda were better as inhibitors. Strain Po 45 was one of the most active (cluster 1, 96.87% I), and its ethyl acetate extract inhibited A. rabiei growth in a bioautographic assay until at least 10 µg/mm applied showing a specific chromatographic band as the responsible of the A. rabiei inhibition.


Subject(s)
Ascomycota/growth & development , Cicer/growth & development , Endophytes/physiology , Peperomia/microbiology , Plant Diseases/prevention & control , Ascomycota/classification , Ascomycota/isolation & purification , Ascomycota/pathogenicity , Ascomycota/physiology , Cicer/microbiology , Coculture Techniques , Crops, Agricultural/growth & development , Crops, Agricultural/microbiology , Endophytes/classification , Endophytes/isolation & purification , Microbial Viability , Phylogeny , Plant Components, Aerial/microbiology , Plant Diseases/microbiology
3.
Fungal Biol ; 120(3): 424-32, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26895871

ABSTRACT

Ascochyta blight is the major disease attacking chickpea (Cicer arietinum) around the world. Since its first time report of isolation in Argentina in 2012, the pathogen has caused severe economic losses and has acquired a great importance. We report here the isolation of Ascochyta rabiei from infected chickpea beans cultivated in Santa Fe, Argentina; its identification by morphological analysis and molecular biology techniques based on internal transcribed spacer (ITS) sequence alignment, its biochemical characterization regarding the capacity to produce proteinase and phospholipase enzymes, and its antifungal susceptibility to common used antifungal agents. In order to detect new inhibitors for A. rabiei from natural sources, a bioautographic method was developed. From the screening method developed, we found that extracts from cultures of Aspergillus parasiticus are active against A. rabiei.


Subject(s)
Ascomycota/classification , Ascomycota/isolation & purification , Cicer/microbiology , Plant Diseases/microbiology , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Argentina , Ascomycota/cytology , Ascomycota/physiology , Aspergillus/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Microbial Sensitivity Tests , Microscopy , Molecular Sequence Data , Mycological Typing Techniques , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...