Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 58(1): 17-21, 2004 May.
Article in English | MEDLINE | ID: mdl-15087158

ABSTRACT

Although selenium is required by vertebrates, toxicity can arise at concentrations only slightly greater than those they require. The toxicity of Se is thought to arise from its ability to substitute for sulfur during the assembly of proteins. However, recent studies also indicate that some forms of selenium are capable of generating oxidative stress in an in vitro test system that includes glutathione. L-Selenomethionine, the predominant form of selenium in the eggs of oviparous vertebrates, does not generate oxidative radicals in this system, but lesions consistent with oxidative stress have been identified in fish and birds with high concentrations of Se. Here we report on the ability of rainbow trout embryos to transform L-Selenomethionine to a form capable of producing a superoxide radical. Oxidative stress appears to be generated by methioninase enzyme activity in the embryos that liberates methylselenol from l-Selenomethionine. Methylselenol redox cycles in the presence of glutathione producing superoxide and likely accounts for oxidative lesions present in fish and birds environmentally exposed to excessive loads of selenomethionine.


Subject(s)
Oncorhynchus mykiss/embryology , Oxidative Stress , Selenomethionine/metabolism , Selenomethionine/toxicity , Animals , Carbon-Sulfur Lyases/pharmacology , Embryonic Development , Oncorhynchus mykiss/physiology , Oxidation-Reduction , Superoxides/analysis
2.
Aquat Toxicol ; 62(4): 321-8, 2003 Feb 26.
Article in English | MEDLINE | ID: mdl-12595171

ABSTRACT

Estrogenic contaminants isolated from waters receiving sewage treatment plant effluents are known to induce the egg yolk precursor vitellogenin (VTG) in male fish. Levels of the metal binding protein metallothionein (MT) have also been shown to be affected by estrogens in fish. It has been postulated that MT declines in estrogen exposed fish to facilitate transfer of the essential metal Zn to cellular components required for VTG synthesis. To examine the changes in MT and VTG concentrations in fish exposed to an estrogen contaminant, lake trout (Salvelinus namaycush) were exposed to waterborne ethynylestradiol at 0, 4, 40 or 400 ng/l(-1) for 21 days. Blood and tissues were collected after 21 days of exposure to measure circulating levels of VTG as well as MT concentrations in liver and kidney. VTG increased in male and female fish from all three exposure groups compared to control fish. MT in liver significantly decreased in males and females compared to the controls, in the two highest exposures. MT in kidney was significantly higher in both sexes of fish exposed to the two highest concentrations of ethynylestradiol. These data are supportive of a relationship between estrogen exposure and the regulation of MT. Further studies to examine the specific links between estrogen exposure, VTG induction and regulation of essential metals like Zn are required.


Subject(s)
Environmental Exposure , Estradiol Congeners/adverse effects , Ethinyl Estradiol/adverse effects , Metallothionein/biosynthesis , Trout/physiology , Vitellogenins/biosynthesis , Animals , Dose-Response Relationship, Drug , Liver/chemistry , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...