Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Neurobiol Aging ; 35(5): 1213.e1-2, 2014 May.
Article in English | MEDLINE | ID: mdl-24355526

ABSTRACT

A hexanucleotide repeat expansion in the chromosome 9 Open Reading Frame 72 gene (C9ORF72) has recently been reported to be cause of familial amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Nevertheless, in the last few years this mutation has been found to be associated with heterogeneous phenotypes, including multiple sclerosis (MS) in concurrence with amyotrophic lateral sclerosis. In this study, we sought to evaluate the presence of the C9ORF72 repeat expansion in a cohort consisting of 314 patients with MS and 222 control subjects. No pathogenic expansion was found in MS and control populations, suggesting that C9ORF72 does not play a major role in MS pathogenesis.


Subject(s)
DNA Repeat Expansion , Multiple Sclerosis/genetics , Proteins/genetics , Adult , Aged , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein , Female , Frontotemporal Lobar Degeneration/genetics , Humans , Male , Middle Aged , Proteins/physiology
2.
Cereb Cortex ; 24(5): 1247-58, 2014 May.
Article in English | MEDLINE | ID: mdl-23258346

ABSTRACT

The intracellular mechanisms driving postmitotic development of cortical γ-aminobutyric acid (GABA)ergic interneurons are poorly understood. We have addressed the function of Rac GTPases in cortical and hippocampal interneuron development. Developing neurons express both Rac1 and Rac3. Previous work has shown that Rac1 ablation does not affect the development of migrating cortical interneurons. Analysis of mice with double deletion of Rac1 and Rac3 shows that these GTPases are required during postmitotic interneuron development. The number of parvalbumin-positive cells was affected in the hippocampus and cortex of double knockout mice. Rac depletion also influences the maturation of interneurons that reach their destination, with reduction of inhibitory synapses in both hippocampal CA1 and cortical pyramidal cells. The decreased number of cortical migrating interneurons and their altered morphology indicate a role of Rac1 and Rac3 in regulating the motility of cortical interneurons, thus interfering with their final localization. While electrophysiological passive and active properties of pyramidal neurons including membrane capacity, resting potential, and spike amplitude and duration were normal, these cells showed reduced spontaneous inhibitory currents and increased excitability. Our results show that Rac1 and Rac3 contribute synergistically to postmitotic development of specific populations of GABAergic cells, suggesting that these proteins regulate their migration and differentiation.


Subject(s)
Cerebral Cortex/cytology , GABAergic Neurons/physiology , Hippocampus/cytology , rac GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein/metabolism , 4-Aminopyridine/pharmacology , Animals , Animals, Newborn , Bicuculline/pharmacology , Cell Movement/drug effects , Cell Movement/genetics , Excitatory Amino Acid Antagonists/pharmacology , GABA-A Receptor Antagonists/pharmacology , GABAergic Neurons/drug effects , Gene Expression Regulation, Developmental/genetics , Inhibitory Postsynaptic Potentials/genetics , Interneurons/drug effects , Interneurons/physiology , Mice , Mice, Knockout , Piperazines/pharmacology , Potassium Channel Blockers/pharmacology , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism , rac GTP-Binding Proteins/genetics , rac1 GTP-Binding Protein/genetics
3.
Neurobiol Aging ; 35(4): 934.e7-10, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24139279

ABSTRACT

A causative association was recently demonstrated between homozygous TREM2 mutations and frontotemporal dementia (FTD)-like syndrome and between heterozygous TREM2 exon2 genetic variations and late-onset Alzheimer's disease (AD). The objective of this study was to evaluate whether heterozygous TREM2 genetic variations might be associated to the risk of FTD. TREM2 exon 2 was sequenced in a group of 1030 subjects-namely, 352 patients fulfilling clinical criteria for FTD, 484 healthy control subjects (HCs), and 194 patients with AD. The mutation frequency and the associated clinical characteristics were analyzed. We identified 8 missense and nonsense mutations in TREM2 exon 2 in 24 subjects. These mutations were more frequent in patients with FTD than in HCs (4.0% vs. 1.0%, p = 0.005). In particular, TREM2 Q33X, R47H, T66M, and S116C mutations were found in FTD and were absent in HCs. These mutations were associated with either the semantic variant of primary progressive aphasia or the behavioral variant FTD phenotypes. The FTD and AD groups were not significantly different with regard to TREM2 genetic variation frequency (AD: 2.6%, p = 0.39). Heterozygous TREM2 mutations modulate the risk of FTD in addition to increasing susceptibility to AD. Additional studies are warranted to investigate the possible role of these mutations in the pathogenesis of neurodegenerative disorders.


Subject(s)
Frontotemporal Dementia/genetics , Genetic Predisposition to Disease/genetics , Heterozygote , Membrane Glycoproteins/genetics , Mutation , Receptors, Immunologic/genetics , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Cohort Studies , Exons/genetics , Female , Humans , Male , Middle Aged
4.
Clin Dev Immunol ; 2013: 939786, 2013.
Article in English | MEDLINE | ID: mdl-23970926

ABSTRACT

In the last few years, genetic and biomolecular mechanisms at the basis of Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) have been unraveled. A key role is played by microglia, which represent the immune effector cells in the central nervous system (CNS). They are extremely sensitive to the environmental changes in the brain and are activated in response to several pathologic events within the CNS, including altered neuronal function, infection, injury, and inflammation. While short-term microglial activity has generally a neuroprotective role, chronic activation has been implicated in the pathogenesis of neurodegenerative disorders, including AD and FTLD. In this framework, the purpose of this review is to give an overview of clinical features, genetics, and novel discoveries on biomolecular pathogenic mechanisms at the basis of these two neurodegenerative diseases and to outline current evidence regarding the role played by activated microglia in their pathogenesis.


Subject(s)
Alzheimer Disease/immunology , Frontotemporal Lobar Degeneration/immunology , Immunity, Innate , Microglia/immunology , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Animals , Frontotemporal Lobar Degeneration/diagnosis , Frontotemporal Lobar Degeneration/genetics , Humans , Immunity, Innate/genetics , Inflammation/immunology , Inflammation/metabolism , Microglia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL