Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol Sci ; 17(11): 1612-1650, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29938265

ABSTRACT

Photodynamic therapy is a therapeutic option to treat cancer and other diseases. PDT is used every day in dermatology, and recent developments in the treatment of glioblastoma, mesothelioma or prostate have demonstrated the efficacy of this modality. In order to improve the efficacy of PDT, different strategies are under development, such as the use of targeted PS or nanoparticles to improve selectivity and the design of light devices to better monitor the light dose. Due to the low penetration of light into tissue, another way to improve the efficacy of PDT to treat deep tumors is the use of upconversion NPs or bi-photon absorption compounds. These compounds can be excited in the red part of the spectrum. A relatively new approach, which we will call PDTX, is the use of X-rays instead of UV-visible light for deeper penetration into tissue. The principle of this technique will be described, and the state-of-art literature concerning this modality will be discussed. First, we will focus on various photosensitizers that have been used in combination with X-ray irradiation. To improve the efficacy of this modality, nanoparticles have been designed that allow the conversion of high-energy ionizing radiation into UV-visible light; these are potential candidates for the PDTX approach. They will be discussed at the end of this review.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Photochemotherapy , Photosensitizing Agents/therapeutic use , Antineoplastic Agents/chemistry , Humans , Photosensitizing Agents/chemistry , X-Rays
2.
Top Curr Chem ; 370: 113-34, 2016.
Article in English | MEDLINE | ID: mdl-26589507

ABSTRACT

Photodynamic therapy (PDT) is a well-established technique employed to treat aged macular degeneration and certain types of cancer, or to kill microbes by using a photoactivatable molecule (a photosensitizer, PS) combined with light of an appropriate wavelength and oxygen. Many PSs are used against cancer but none of them are highly specific. Moreover, most are hydrophobic, so are poorly soluble in aqueous media. To improve both the transportation of the compounds and the selectivity of the treatment, nanoparticles (NPs) have been designed. Thanks to their small size, these can accumulate in a tumor because of the well-known enhanced permeability effect. By changing the composition of the nanoparticles it is also possible to achieve other goals, such as (1) targeting receptors that are over-expressed on tumoral cells or neovessels, (2) making them able to absorb two photons (upconversion or biphoton), and (3) improving singlet oxygen generation by the surface plasmon resonance effect (gold nanoparticles). In this chapter we describe recent developments with inorganic NPs in the PDT domain. Pertinent examples selected from the literature are used to illustrate advances in the field. We do not consider either polymeric nanoparticles or quantum dots, as these are developed in other chapters.


Subject(s)
Inorganic Chemicals/administration & dosage , Nanoparticles , Photochemotherapy , Humans , Reactive Oxygen Species/metabolism
3.
Curr Med Chem ; 19(32): 5580-94, 2012.
Article in English | MEDLINE | ID: mdl-22978328

ABSTRACT

Angiogenesis is a key step in the tumoral progression process. It is characterized by an over-expression of a number of matrix metalloproteinases (MMP). Among these MMPs, gelatinases (MMP-2 and MMP-9) are known to play a critical role in tumor angiogenesis and the growth of many cancers. Photodynamic Molecular Beacons (PMB) can be designed for cancer treatment by associating a chlorin-like photosensitizer and a black hole quencher linked by a gelatinase substrate peptide with the aim of silencing photosensitizer toxicity in non-targeted cells and restore its toxicity only in surrounding gelatinases. This article provides a report on the synthesis and photophysical and biochemical studies of new families of PMB, using tetraphenylchlorin and a black hole quencher as a donor-acceptor pair, and MMP specific sequence (H-Gly-Pro-Leu-Gly-Ile-Ala-Gly-Gln-Lys-OH or H-Pro-Leu-Gly-Leu-OH) to keep them in close proximity. Different spacers were used to evaluate the influence of the distance between the photosensitizer and the quencher on the photophysical properties and enzymatic activation of the PMB. Time-resolved quenching experiments were performed and FRET energy transfer could be observed. Photosensitizers' triplet state band in transient absorption disappears in PMB. However, even if both MMP-2 and MMP-9 were found to efficiently cleave the peptide alone, no cleavage was observed for all PMB. Further studies would be required to assess the ability of the PMB constructs to retain the sensitivity of the peptide linker to be cleaved by matrix metalloproteinases.


Subject(s)
Matrix Metalloproteinase 2/administration & dosage , Matrix Metalloproteinase 9/administration & dosage , Photochemotherapy/methods , Oligopeptides/metabolism , Photosensitizing Agents/administration & dosage , Recombinant Proteins/administration & dosage
4.
J Bone Joint Surg Br ; 87(10): 1411-5, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16189318

ABSTRACT

A percutaneous supramalleolar osteotomy with multiple drill holes and closed osteoclasis was used to correct rotational deformities of the tibia in patients with cerebral palsy. The technique is described and the results in 247 limbs (160 patients) are reported. The mean age at the time of surgery was 10.7 years (4 to 20). The radiographs were analysed for time to union, loss of correction, and angulation at the site of the osteotomy. Bone healing was obtained in all patients except one in a mean period of seven weeks (5 to 12). Malunion after loss of reduction at the site of the osteotomy developed in one tibia. Percutaneous supramalleolar osteotomy of the tibia is a safe and simple surgical procedure.


Subject(s)
Bone Malalignment/surgery , Cerebral Palsy/surgery , Osteotomy/methods , Tibia/surgery , Adolescent , Adult , Bone Malalignment/diagnostic imaging , Bone Malalignment/etiology , Cerebral Palsy/complications , Child , Child, Preschool , Female , Fluoroscopy , Follow-Up Studies , Humans , Male , Retrospective Studies , Tibia/diagnostic imaging , Torsion Abnormality/surgery
5.
Arch Biochem Biophys ; 341(1): 34-9, 1997 May 01.
Article in English | MEDLINE | ID: mdl-9143350

ABSTRACT

This work studied the effect of cholesteryl hemisuccinate incorporation on membrane fluidity and on the kinetics of oxygen diffusion at different depths in the erythrocyte membrane. Cholesterol concentration in the membrane was expressed as the cholesterol-protein ratio (C/Pt). The membrane fluidity, as assessed by a fluorescence polarization method with diphenyl-hexatriene and 1-(4-trimethylamino)-6-phenylhexa-1,3,5-triene, decreased as the C/Pt ratio increased. Time-resolved fluorescence spectroscopy of pyrene dodecanoic acid (PDA) under an increasing C/Pt ratio in the erythrocyte membrane revealed enhanced oxygen diffusion in the middle of the membrane bilayer (in which PDA was incorporated), which was not the case with pyrene butyric acid (PBA) incorporated in the internal part of the membrane surface. It has generally been accepted that increased membrane fluidity reduces the physical barrier to oxygen permeation. Such conflicting observations on oxygen permeation in the rigidified erythrocyte membrane could be due to variations in oxygen solubility (preferential partitioning) in different polarity microdomains (cholesterol and phospholipid partitions).


Subject(s)
Cholesterol/physiology , Erythrocyte Membrane/metabolism , Membrane Fluidity/physiology , Oxygen/metabolism , Cholesterol/analysis , Cholesterol Esters/metabolism , Cholesterol Esters/pharmacology , Diffusion , Erythrocyte Membrane/chemistry , Fluorescence Polarization , Humans , Membrane Fluidity/drug effects , Molecular Probes/metabolism , Molecular Structure , Pyrenes/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...