Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36904472

ABSTRACT

Studies into environmental conditions and their effects on the properties of renewable materials are gaining significant attention in the research field, particularly for natural fibres and their resultant composites. However, natural fibres are prone to water absorption because of the hydrophilic nature of the fibres, which affects the overall mechanical properties of natural-fibre-reinforced composites (NFRCs). In addition, NFRCs are based mainly on thermoplastic and thermosetting matrices, which could be used in automobile and aerospace components as lightweight materials. Therefore, such components have to survive the maximum temperature and humid conditions in different parts of the world. Based on the above factors, through an up-to-date review, this paper critically discusses the effects of environmental conditions on the impact performance of NFRCs. In addition, this paper critically assesses the damage mechanisms of NFRCs and their hybrids by focusing more on moisture ingress and relative humidity in the impact damage behaviour of NFRCs.

2.
Polymers (Basel) ; 14(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36365640

ABSTRACT

Fibre Metal Laminates (FMLs) consist of layers of metals combined with layers of fibre-reinforced composites bonded together to create a laminate. The behaviour of a Fibre Metal Laminate (FML) with natural fibre composites has been investigated in this study with a specific focus on the performance of the laminate under uniaxial tension. The integration of aluminium layers with natural fibre flax/pp layers at different fibre orientations has been numerically modelled and analysed, by investigating the contact interface between natural fibre metal laminates (NFML) using finite elements (FE) implemented in ABAQUS/Explicit. The finite element model was developed by the isotropic-hardening behaviour of metal layers, the built-in Hashin damage model and cohesive surface-based behaviour for the interface. The results of the simulation included stress-strain response, failure sequences, delamination effect and ultimate tensile strength. It was found that those results are significantly affected by the layup sequence, giving a significant advantage to the unidirectional laminate, when the uniaxial loading is taken into consideration. This advantage is measured as a 41.9% reduction of the ultimate tensile strength when the flax fibres are oriented at [0/90] configuration between the aluminium layers and a 30% reduction when the fibres are oriented at [±45] angles.

3.
Polymers (Basel) ; 14(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35012118

ABSTRACT

This study aims to investigate the influence of fibre orientation and varied incident energy levels on the impact-induced damage of S2/FM94, a kind of aerospace glass fibre epoxy/composite regularly used in aircraft components and often subjected to low-velocity impact loadings. Effects of varying parameters on the impact resistance behaviour and damage modes are evaluated experimentally and numerically. Laminates fabricated with four different fibre orientations 0/90/+45/-458s, 0/90/90/08s, +45/-4516s, and  032 were impacted using three energy levels. Experimental results showed that plates with unidirectional fibre orientation failed due to shear stresses, while no penetration occurred for the 0/90/90/08s and +45/-4516s plates due to the energy transfer back to the plate at the point of maximum displacement. The impact energy and resulting damage were modelled using Abaqus/Explicit. The Finite Element (FE) results could accurately predict the maximum impact load on the plates with an accuracy of 0.52% to 13%. The FE model was also able to predict the onset of damage initiation, evolution, and the subsequent reduction of the strength of the impacted laminates. The results obtained on the relationship of fibre geometry and varying incident impact energy on the impact damage modes can provide design guidance of S2/FM94 glass composites for aerospace applications where impact toughness is critical.

SELECTION OF CITATIONS
SEARCH DETAIL
...