Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Chem Sci ; 14(35): 9283-9292, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37712032

ABSTRACT

We show the emergence of strong catalytic activity at low concentrations in dynamic libraries of complementary sequence-defined oligomeric chains comprising pendant functional catalytic groups and terminal recognition units. In solution, the dynamic constitutional library created from pairs of such complementary oligomers comprises free oligomers, self-assembled di(oligomeric) macrocycles, and a virtually infinite collection of linear poly(oligomeric) chains. We demonstrate, on an exemplary catalytic system requiring the cooperation of no less than five chemical groups, that supramolecular di(oligomeric) macrocycles exhibit a catalytic turnover frequency ca. 20 times larger than the whole collection of linear poly(oligomers) and free chains. Molecular dynamics simulations and network analysis indicate that self-assembled supramolecular di(oligomeric) macrocycles are stabilized by different interactions, among which chain end pairing. We mathematically model the catalytic properties of such complex dynamic libraries with a small set of physically relevant parameters, which provides guidelines for the synthesis of oligomers capable to self-assemble into functionally-active supramolecular macrocycles over a larger range of concentrations.

2.
Inorg Chem ; 62(22): 8576-8588, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37221454

ABSTRACT

The present study further explores the behavior of polyoxometalate-based hybrid compounds as catalysts for liquid-phase cyclooctene epoxidation with H2O2. Precisely, it unveils the nature of the relevant active species derived from the hybrid based on Keggin polyoxometalate (POM) and bipyridines (bpy) of formula (2,2'-Hbpy)3[PW12O40] (1). Whereas (i) it is generally accepted that the catalytic oxidation of organic substrates by H2O2 involving Keggin HPAs proceeds via an oxygen transfer route from a peroxo intermediate and (ii) the catalytically active peroxo species is commonly postulated to be the polyperoxotungstate {PO4[W(O)(O2)2]4}3- complex (PW4), we show that the studied epoxidation reaction seems to be more sophisticated than commonly reported. During the catalytic epoxidation, 1 underwent a partial transformation into two oxidized species, 2 and 3. Compound 3 corresponding to 2,2'-bipyridinium oxodiperoxotungstate of formula [WO(O2)2(2,2'-bpy)] was shown to be the main species responsible for the selective epoxidation of cyclooctene since 2 (in which the POM is associated with a protonated mono-N-oxide derivative of 2,2'-bpy of formula (2,2'-HbpyO)3[PW12O40]) exhibited no activity. The structures of 1, 2, and 3 were solved by single-crystal X-ray diffraction and were independently synthesized. The speciation of 1 was monitored under catalytic conditions by 1H and 1H DOSY NMR spectroscopies, where the formation in situ of 2 and 3 was revealed. A reaction mechanism is proposed that highlights the pivotal, yet often underestimated, role of H2O2 in the reached catalytic performances. The active species responsible for the oxygen transfer to cyclooctene is a hydroperoxide intermediate species that is formed by the interaction between the anionic structure of the catalyst and H2O2. The latter operates as a "conservative agent" whose presence in the catalytic system is required to prevent the catalysts from deactivating irreversibly.

3.
Inorg Chem ; 61(29): 11084-11094, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35817416

ABSTRACT

The first mesoporous bimetallic TiIII/Al metal-organic framework (MOF) containing amine functionalities on its linkers has been selectively obtained by converting the cheap commercially available (TiCl3)3AlCl3 into Ti3-xAlxCl3(THF)3 and reacting this complex with 2-aminoterephthalic acid in dimethylformamide (DMF) under soft solvothermal conditions. This compound is structurally related to the previously described NH2-MIL-101(M) (M = Cr, Al, and Fe) MOFs. Thermal gravimetric analyses and in situ powder X-ray diffraction (PXRD) measurements demonstrated that this highly air-sensitive TiIII-containing MOF is structurally stable up to 200 °C. Nuclear magnetic resonance (NMR) spectroscopy, elemental analysis, and inductively coupled plasma (ICP) revealed that NH2-MIL-101(TiIII) contains trinuclear Ti3(µ3-O)Cl(DMF)2(RCOO)6 clusters with strongly bound DMF molecules and a small amount of aluminum. Sorption experiments revealed a higher affinity of this MOF for hydrogen compared to the previously described monometallic unfunctionalized MIL-101(TiIII) MOF.

4.
Inorg Chem ; 60(21): 16666-16677, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34652917

ABSTRACT

The metal sites of MIL-100(Fe), MIL-100(Fe,Al), and MIL-100(Al) metal-organic frameworks (MOFs) were decorated with ethylenediamine (EN). Interestingly, the Al-containing MOFs presented hierarchized porosity, and their structural integrity was maintained upon functionalization. Solution and solid-state NMR confirmed the grafting efficiency in the case of MIL-100(Al) and the presence of a free amine group. It was shown that MIL-100(Al) can be functionalized by only one EN molecule in each trimeric Al3O cluster unit, whereas the other two aluminum sites are occupied by a hydroxyl and a water molecule. The -NH2 sites of the grafted ethylenediamine can be used for further postfunctionalization through amine chemistry and are responsible for the basicity of the functionalized material as well as increased affinity for CO2. Furthermore, the presence of coordinated water molecules on the Al-MOF is responsible for simultaneous Brønsted acidity. Finally, the Al-containing MOFs show an unusual carbon dioxide sorption mechanism at high pressures that distinguishes those materials from their iron and chromium counterparts and is suspected to be due to the presence of polarized Al-OH bonds.

5.
Inorg Chem ; 59(19): 14536-14543, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32954720

ABSTRACT

The stereoisomerically pure synthesis of a novel heptanuclear Ru(II)-Os(II) antenna bearing multitopic terpyridine ligands is reported. An unambiguous structural characterization was obtained by 1H NMR spectroscopy and ion mobility spectrometry (IMS-MS). The heptanuclear complex exhibits large molar absorption coefficients (77900 M-1 cm-1 at 497 nm) and undergoes unitary, downhill, convergent energy transfer from the peripheral Ru(II) subunits to the central Os(II) that displays photoluminescence with a lifetime (τ = 161 ns) competent for diffusional excited-state electron transfer reactivity in solution.

6.
RSC Adv ; 10(34): 19822-19831, 2020 May 26.
Article in English | MEDLINE | ID: mdl-35520409

ABSTRACT

Metal-organic frameworks (MOFs) are recognized as ideal candidates for many applications such as gas sorption and catalysis. For a long time the properties of these materials were thought to essentially arise from their well-defined crystal structures. It is only recently that the importance of structural defects for the properties of MOFs has been evidenced. In this work, salt-assisted and liquid-assisted grinding were used to introduce defects in a copper-based MOF, namely HKUST-1. Different milling times and post-synthetic treatments with alcohols allow introduction of defects in the form of free carboxylic acid groups or reduced copper(i) sites. The nature and the amount of defects were evaluated by spectroscopic methods (FTIR, XPS) as well as TGA and NH3 temperature-programmed desorption experiments. The negative impact of free -COOH groups on the catalytic cyclopropanation reaction of ethyl diazoacetate with styrene, as well as on the gravimetric CO2 sorption capacities of the materials, was demonstrated. The improvement of the catalytic activity of carboxylic acid containing materials by the presence of CuI sites was also evidenced.

7.
Angew Chem Int Ed Engl ; 58(10): 3193-3197, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30653791

ABSTRACT

An enantioselective aryl transfer is promoted using chiral tricoordinated lithium amido aryl zincates that are easily accessible reagents and whose chiral appendage is simply recovered for reuse. The arylation reaction is run in good yields (60 % average on twenty substrates) and high enantiomeric excesses (95 % ee average). This occurs whatever the ortho, meta, or para substituent borne by the substrate and a complete chemoselectivity is observed with respect to the aldehyde function. Sensitive groups such as nitriles, esters, ketones, and enolisable substrates resist to the action of the ate reagent, warranting a large scope to this methodology.

9.
Chemistry ; 24(44): 11417-11425, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-29770508

ABSTRACT

A formal [4+1]-annulation strategy between sulfur ylides and 1,3-dienes was developed to afford functionalized cyclopentanoids. The process consists of a stereoselective cyclopropanation reaction followed, in situ, by a stereospecific MgI2 -catalyzed vinylcyclopropane-cyclopentene rearrangement. The use of chiral sulfur ylides provided cyclopentanoids with excellent enantiocontrol. A combined experimental and computational mechanistic study showed that the stereospecificity of the rearrangement could be accounted for by a double SN 2 reaction mechanism involving iodide.

10.
Chemistry ; 24(37): 9238-9242, 2018 Jul 02.
Article in English | MEDLINE | ID: mdl-29694680

ABSTRACT

A methodology consisting in carrying out enantioselective nucleophilic 1,2-additions (ee values up to 97 %) from cheap, easily accessible, and never described before, chiral lithium amido zincates is presented. These multicomponent reactants auto-assemble when mixing, in a 1:1 ratio, a homoleptic diorganozinc (R2 Zn) with a chiral lithium amide (CLA). The latter, obtained after a single reductive amination, plays the role of the chiral inductor and is fully recoverable thanks to a simple acid-base wash, allowing being recycled and re-use without loss of stereochemical information.

11.
Chemistry ; 23(51): 12475-12479, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28703375

ABSTRACT

Despite its common use in synthesis, the structure of isopropylliyhium in THF has never been determined, a dimer being generally proposed but not supported. This paper fills this data gap through a sophisticated NMR study that shows that, in THF at low-temperature, isopropyllithium is in the form of a 1:2 mixture of a trisolvated monomer and a disolvated dimer in equilibrium. The presence of the monomer, never evoked before, together with a hypo-solvation of the dimer hinted by DFT calculations, provides a rational explanation to the remarkable reactivity of this organolithium reagent in ethereal solvents.

12.
Chem Rec ; 17(6): 622-639, 2017 06.
Article in English | MEDLINE | ID: mdl-27996185

ABSTRACT

An overview on the structural arrangements adopted by Chiral Lithium Amides (CLAs), alone or in mixed complexes, is presented. These species are important reagents for asymmetric synthesis and understanding their organization is essential to improve their design and the reaction conditions.

13.
J Org Chem ; 80(12): 6441-6, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-25997158

ABSTRACT

In cold THF and in the presence of LiCl, a lithium pyrrolidinylamide forms a 1:1 mixed aggregate, which is observed directly by ESI-MS. Gas-phase protonation of this species leads to selective transfer of H(+) to the chlorine, suggesting that LiCl shields the amide nitrogen and prevents its direct protonation.

14.
Dalton Trans ; 43(38): 14219-28, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-24967702

ABSTRACT

An NMR study of a 1 : 1 mixture of a chiral lithium amide (4a) and n-BuLi shows that depending on the solvent employed (Et2O or THF) a mixed aggregate can form in proportions that are directly related to the ees measured during the enantioselective alkylation of o-tolualdehyde by these same species.

15.
Chemphyschem ; 15(6): 1116-25, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24402779

ABSTRACT

We report a joint experimental and computational study into the spectroscopic properties of a prototypical D5 organic dye, both in solution and adsorbed on a TiO2 surface, with the aim of modeling and quantifying the UV/Vis spectral shifts that occur in the different explored environments. Going from the dye in solution to dye-sensitized TiO2, various factors may shift the position of the UV/Vis absorption maximum, both towards longer and shorter wavelengths. Here we have focused on the effect of dye aggregation on TiO2, surface protonation, and solvent effects. The D5 dye forms stable aggregates on the TiO2 surface that cause spectral blueshifts. We used different sensitization conditions to vary the dye loading and thus the extent of dye aggregation. For each sensitization condition, we explored protonated and native TiO2 films. Computational modeling of different dimeric aggregates with increasing intermolecular interactions and simulation of the associated optical responses also confirm the observed spectral blueshifts. Our results show that both the presence of surface protons and solvent stabilize the excited state of the adsorbed dye molecules, which causes a marked redshift in the absorption maximum and thus moves in the opposite direction to the shift due to the increase in the surface coverage.

16.
J Am Chem Soc ; 133(16): 6472-80, 2011 Apr 27.
Article in English | MEDLINE | ID: mdl-21466212

ABSTRACT

A multinuclear NMR study shows that the deprotonation of diphenylphosphine-borane by n-BuLi in THF leads to a disolvated lithium phosphido-borane Ph(2)P(BH(3))Li of which Li(+) is connected to the hydrides on the boron and two THF molecules rather than to the phosphorus. This entity behaves as both a phosphination and a reducing agent, depending on the kinetic or thermodynamic control imposed to the reaction medium. Density functional theory computations show that H(2)P(BH(3))Li exhibits a ditopic character (the lithium cation can be in the vicinity of the hydride or of the phosphorus). It explains its dual reactivity (H- or P-addition), both routes going through somewhat similar six-membered transition states with low activation barriers.

SELECTION OF CITATIONS
SEARCH DETAIL
...