Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(20): 25953-25965, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38716923

ABSTRACT

Layered oxides constitute one of the most promising cathode materials classes for large-scale sodium-ion batteries because of their high specific capacity, scalable synthesis, and low cost. However, their practical use is limited by their low energy density, physicochemical instability, and poor cycling stability. Aiming to mitigate these shortcomings, in this work, we synthesized polycrystalline (PC) and single-crystal (SC) P2-type Na0.67-δMn0.67Ni0.33O2 (NMNO) cathode materials through a solid-state route and evaluated their physicochemical and electrochemical performance. The SC-NMNO cathode with a large mean primary particle size (D50) of 12.7 µm was found to exhibit high cycling stability leading to 47% higher capacity retention than PC-NMNO after 175 cycles at 1C rate in the potential window 4.2-1.5 V. This could be attributed to the effective mitigation of parasitic side reactions at the electrode-electrolyte interface and suppressed intergranular cracking induced by anisotropic volume changes. This is confirmed by the lower volume variation of SC-NMNO (ΔV ∼ 1.0%) compared to PC-NMNO (ΔV ∼ 1.4%) upon charging to 4.2 V. Additionally, the SC-NMNO cathode displayed slightly higher thermal stability compared to PC-NMNO. Both cathodes exhibited good chemical stability against air and water exposure, thus enabling material storage/handling in the ambient atmosphere as well as making them suitable for aqueous processing. In this regard, PC-NMNO was investigated with two low-cost aqueous binders, carboxymethyl cellulose, and sodium trimetaphosphate, which exhibited higher binding strength and displayed excellent electrochemical performance compared to PVDF, which could potentially lead to significant cost reduction in electrode manufacturing.

2.
Small ; : e2402204, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778727

ABSTRACT

Potassium-ion batteries (KIBs) can offer high energy density, cyclability, and operational safety while being economical due to the natural abundance of potassium. Utilizing graphite as an anode, suitable cathodes can realize full cells. Searching for potential cathodes, this work introduces P3-type K0.5Ni1/3Mn2/3O2 layered oxide as a potential candidate synthesized by a simple solid-state method. The material works as a 3.2 V cathode combining Ni redox at high voltage and Mn redox at low voltage and exhibits highly reversible K+ ion (de)insertion at ambient and elevated (40-50 °C) temperatures. First-principles calculations suggest the ground state in-plane Mn-Ni ordering in the MO2 sheets is strongly correlated to the K-content in the framework, leading to an interwoven and alternative row ordering of Ni-Mn in K0.5Ni1/3Mn2/3O2. Postmortem and electrochemical titration reveal the occurrence of a solid solution mechanism during K+ (de)insertion. The findings suggest that the Ni addition can effectively tune the electronic and structural properties of the cathode, leading to improved electrochemical performance. This work provides new insights in the quest to develop potential low-cost Co-free KIB cathodes for practical applications in stationary energy storage.

3.
Inorg Chem ; 63(16): 7137-7145, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38588508

ABSTRACT

Potassium-ion batteries are widely being pursued as potential candidates for stationary (grid) storage, where energy dense K+ insertion cathodes are central to economic and energy efficient operation. To develop robust K-based cathodes, it is key to correlate their underlying electronic states to the final electrochemical performance. Here, we report the synthesis and structure-electrochemical property correlation in P3-type K0.5Mn1-xCoxO2 binary layered oxide cathodes. Spectroscopic analyses revealed a random distribution of Mn and Co in transition metal layers in the oxygen anion framework. In this solid-solution family, Co substitution improved the electronic conductivity and structural stability of P3 phases by minimizing local lattice distortion. Co substitution led to a systematic shift of the Co4+/Co3+ and Mn4+/Mn3+ redox potentials. Galvanostatic cycling showed that the Co substitution reduced the initial capacity while improving the cycling stability. The role of Co on final electrochemical properties of P3-layered oxides has been elucidated as a design tool to develop practical potassium-ion batteries.

4.
ChemSusChem ; 17(8): e202301154, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38179813

ABSTRACT

P2-type cobalt-free MnNi-based layered oxides are promising cathode materials for sodium-ion batteries (SIBs) due to their high reversible capacity and well chemical stability. However, the phase transformations during repeated (dis)charge steps lead to rapid capacity decay and deteriorated Na+ diffusion kinetics. Moreover, the electrode manufacturing based on polyvinylidene difluoride (PVDF) binder system has been reported with severely defluorination issue as well as the energy intensive and expensive process due to the use of toxic and volatile N-methyl-2-pyrrolidone (NMP) solvent. It calls for designing a sustainable, better performing, and cost-effective binder for positive electrode manufacturing. In this work, we investigated inorganic sodium metasilicate (SMS) as a viable binder in conjunction with P2-Na0.67Mn0.55Ni0.25Fe0.1Ti0.1O2 (NMNFT) cathode material for SIBs. The NMNFT-SMS electrode delivered a superior electrochemical performance compared to carboxy methylcellulose (CMC) and PVDF based electrodes with a reversible capacity of ~161 mAh/g and retaining ~83 % after 200 cycles. Lower cell impedance and faster Na+ diffusion was also observed in this binder system. Meanwhile, with the assistance of TEM technique, SMS is suggested to form a uniform and stable nanoscale layer over the cathode particle surface, protecting the particle from exfoliation/cracking due to electrolyte attack. It effectively maintained the electrode connectivity and suppressed early phase transitions during cycling as confirmed by operando XRD study. With these findings, SMS binder can be proposed as a powerful multifunctional binder to enable positive electrode manufacturing of SIBs and to overall reduce battery manufacturing costs.

5.
Chem Commun (Camb) ; 59(97): 14391-14394, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37934428

ABSTRACT

Aqueous zinc-ion batteries form a key post-Li-ion batteries to cater the rising demand for grid storage. Fe-based compounds can be used as economical cathodes for zinc-ion batteries. Herein, we explored iron-based flourophosphate as a potential polyanionic cathode. Involving the Fe3+/2+ redox process, it can reversibly intercalate Zn2+ yielding a capacity of ∼80 mA h g-1, involving a solid-solution mechanism. Polyanionic Fe-based phosphate frameworks can be harnessed as potential low-cost cathodes for secondary zinc-ion batteries.

6.
Inorg Chem ; 62(37): 14971-14979, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37677129

ABSTRACT

Given the increasing energy storage demands and limited natural resources of Li, K-ion batteries (KIBs) could be promising next-generation systems having natural abundance, similar chemistry, and energy density. Here, we have investigated the P3-type K0.5TMO2 (where TM = Ti, V, Cr, Mn, Co, or Ni) systems using density functional theory calculations as potential positive intercalation electrodes (or cathodes) for KIBs. Specifically, we have identified ground-state configurations and calculated the average topotactic voltages, electronic structures, on-site magnetic moments, and thermodynamic stabilities of all P3-K0.5TMO2 compositions and their corresponding depotassiated P3-TMO2 frameworks. Additionally, we evaluated the dynamic stability and K-mobility in select P3 structures. We find that K adopts the honeycomb or zig-zag configuration within each K-layer of all P3 structures considered, irrespective of the transition-metal (TM). In terms of voltages, we find the Co- and Ti-based compositions to exhibit the highest (4.59 V vs. K) and lowest (2.24 V) voltages, respectively, with the TM contributing to the redox behavior upon K (de-)intercalation. We observe all P3-K0.5TMO2 to be (meta)stable and hence experimentally synthesizable according to our 0 K convex hull calculations, while all depotassiated P3-TMO2 configurations are unstable and may appear during electrochemical cycling. Also, we verified the stability of the prismatic coordination environment of K compared to octahedral coordination at the K0.5TMO2 compositions using Rouxel and cationic potential models. Finally, combining our voltage and stability calculations, we find P3-KxCoO2 to be the most promising cathode composition, while P3-KxNiO2 is worth exploring. We also find P3-KxMnO2 to be worth pursuing given its dynamic stability and facile migration of K+ at both potassiated and depotassiated compositions. Our work should contribute to the exploration of strategies and materials required to make practical KIBs.

7.
Inorg Chem ; 62(31): 12345-12355, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37477874

ABSTRACT

Development of highly efficient, earth-abundant, and stable bifunctional electrocatalysts is pivotal for designing viable next-generation metal-air batteries. Cobalt-based phosphates provide a treasure house to design electrocatalysts, with a wide range of cation substitutions to further enhance their electrocatalytic activity. In particular, phosphates with distorted geometry show favorable binding efficiency toward water molecules with low overpotential. In the present work, zinc-substituted cobalt phosphate ZnCo2(PO4)2 was investigated. Its crystal structure was solved to a monoclinic framework built with CoO6 octahedra and distorted CoO5/ZnO5 trigonal bipyramid leading to efficient bifunctional electrocatalytic activity. It offers robust structural stability with onset potential values of 0.87 V (vs reversible hydrogen electrode (RHE)) and 1.50 V (vs RHE) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes, respectively, comparable to the precious metal catalysts. The origin and stability of the bifunctional activity were probed by combining ex situ diffraction and electron microscopy corroborated by ab initio calculations. Overall, zinc-substituted cobalt phosphate [ZnCo2(PO4)2] forms a potential bifunctional electrocatalyst with tunable local cobalt coordination that can be harnessed for metal-air batteries.

8.
ACS Omega ; 7(46): 42482-42488, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36440143

ABSTRACT

Due to higher packing density, lower working potential, and area specific impedance, the MLi2Ti6O14 (M = 2Na, Sr, Ba, and Pb) titanate family is a potential alternative to zero-strain Li4Ti5O12 anodes used commercially in Li-ion batteries. However, the exact lithiation mechanism in these compounds remains unclear. Despite its structural similarity, MLi2Ti6O14 behaves differently depending on charge and size of the metal ion, hosting 1.3, 2.7, 2.9, and 4.4 Li per formula unit, giving charge capacity values from 60 to 160 mAh/g in contrast to the theoretical capacity trend. However, high-temperature oxide melt solution calorimetry measurements confirm strong correlation between thermodynamic stability and the observed capacity. The main factors controlling energetics are strong acid-base interactions between basic oxides MO, Li2O and acidic TiO2, size of the cation, and compressive strain. Accordingly, the energetic stability diminishes in the order Na2Li2Ti6O14 > BaLi2Ti6O14 > SrLi2Ti6O14 > PbLi2Ti6O14. This sequence is similar to that in many other oxide systems. This work exhibits that thermodynamic systematics can serve as guidelines for the choice of composition for building better batteries.

9.
Phys Chem Chem Phys ; 24(37): 22756-22767, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36111680

ABSTRACT

The search for an alternative high-voltage polyanionic cathode material for Li-ion batteries is vital to improve the energy densities beyond the state-of-the-art, where sulfate frameworks form an important class of high-voltage cathode materials due to the strong inductive effect of the S6+ ion. Here, we have investigated the mechanism of cationic and/or anionic redox in LixM(SO4)2 frameworks (M = Mn, Fe, Co, and Ni and 0 ≤ x ≤ 2) using density functional calculations. Specifically, we have used a combination of Hubbard U corrected strongly constrained and appropriately normed (SCAN+U) and generalized gradient approximation (GGA+U) functionals to explore the thermodynamic (polymorph stability), electrochemical (intercalation voltage), geometric (bond lengths), and electronic (band gaps, magnetic moments, charge populations, etc.) properties of the bisulfate frameworks considered. Importantly, we find that the anionic (cationic) redox process is dominant throughout delithiation in the Ni (Mn) bisulfate, as verified using our calculated projected density of states, bond lengths, and on-site magnetic moments. On the other hand, in Fe and Co bisulfates, cationic redox dominates the initial delithiation (1 ≤ x ≤ 2), while anionic redox dominates subsequent delithiation (0 ≤ x ≤ 2). In addition, evaluation of the crystal overlap Hamilton population reveals insignificant bonding between oxidized O atoms throughout the delithiation process in the Ni bisulfate, indicating robust battery performance that is resistant to irreversible oxygen evolution. Finally, we observe that both GGA+U and SCAN+U predictions are in qualitative agreement for the various properties predicted. Our work should open new avenues for exploring lattice oxygen redox in novel high voltage polyanionic cathodes, especially using the SCAN+U functional.

10.
ACS Appl Mater Interfaces ; 14(36): 40761-40770, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36065996

ABSTRACT

Developing earth-abundant low-cost bifunctional oxygen electrocatalysts is a key approach to realizing efficient energy storage and conversion. By exploring Co-based sodium battery materials, here we have unveiled nanostructured pyrophosphate Na2CoP2O7 polymorphs displaying efficient bifunctional electrocatalytic activity. While the orthorhombic polymorph (o-NCPy) has superior oxygen evolution reaction (OER) activity, the triclinic polymorph (t-NCPy) delivers better oxygen reduction reaction (ORR) activity. Simply by tuning the annealing condition, these pyrophosphate polymorphs can be easily prepared at temperatures as low as 500 °C. The electrocatalytic activity is rooted in the Co redox center with the (100) active surface and stable structural framework as per ab initio calculations. It marks the first case of phospho-anionic systems with both polymorphs showing stable bifunctional activity with low combined overpotential (ca. ∼0.7 V) comparable to that of reported state-of-the-art catalysts. These nanoscale cobalt pyrophosphates can be implemented in rechargeable zinc-air batteries.

11.
Dalton Trans ; 51(29): 11169-11179, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35801572

ABSTRACT

Mineral exploration forms a key approach for unveiling functional battery electrode materials. The synthetic preparation of naturally found minerals and their derivatives can aid in designing of new electrodes. Herein, saranchinaite Na2Cu(SO4)2 and its hydrated derivative kröhnkite Na2Cu(SO4)2·2H2O bisulfate minerals have been prepared using a facile spray drying route for the first time. The phase stability relation during the (de)hydration process was examined synergising in situ X-ray diffraction and thermochemical studies. Kröhnkite forms the thermodynamically stable phase as the hydration of saranchinaite to kröhnkite is highly exothermic (-51.51 ± 0.63 kJ mol-1). Structurally, kröhnkite offers a facile 2D pathway for Na+ ion migration resulting in 20 times higher total conductivity than saranchinaite at 60 °C. Both compounds exhibited a conversion redox mechanism for Li-ion storage with the first discharge capacity exceeding 650 mA h g-1 (at 2 mA g-1vs. Li+/Li) upon discharge up to 0.05 V. Post-mortem analysis revealed that the presence of metallic Cu in the discharged state is responsible for high irreversibility during galvanostatic cycling. This study reaffirms the exploration of Cu-based polyanionic sulfates, which while having limited (de)insertion properties, can be harnessed for conversion-based electrode materials for batteries.

12.
ACS Appl Mater Interfaces ; 14(7): 8992-9001, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35133786

ABSTRACT

Economic and sustainable (ecological) energy storage forms a major pillar of the global energy sector. Bifunctional electrocatalysts, based on oxygen electrolysis, play a key role in the development of rechargeable metal-air batteries. Pursuing precious metal-free economic catalysts, here, we report K2CoP2O7 pyrophosphate as a robust cathode for secondary zinc-air batteries with efficient oxygen evolution and oxygen reduction (OER||ORR) activity. Prepared by autocombustion, nanoscale K2CoP2O7 exhibited excellent oxygen reduction and evolution reactions among all phosphate-based electrocatalysts. In particular, the OER activity surpassed that of commercial RuO2 with low overpotential (0.27 V). First-principles calculations revealed that the bifunctional activity is rooted in the Co active site with the CoO5 local coordination in the most stable (110) surface. This nanostructured (tetragonal) pyrophosphate can be harnessed as an economic bifunctional catalyst for zinc-air batteries.

13.
Inorg Chem ; 61(9): 3959-3969, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35201758

ABSTRACT

The rational design of novel cathode materials remains a key pursuit in the development of (post) Li-ion batteries. Considering the relative ionic and Stokes radii and open frameworks with large tunnels, Na-based compounds can act as versatile cathodes for monovalent Li-ion and post-Li-ion batteries. Here, tunnel-type sodium insertion material Na0.44MnO2 is demonstrated as an intercalation host for Li-ion and K-ion batteries. The rod-shaped Na0.44MnO2 was synthesized by a solution combustion method assuming an orthorhombic structure (space group Pbam), which led to Na0.11K0.27MnO2 (NKMO) and Na0.18Li0.51MnO2 (NLMO) cathodes for K-ion batteries and Li-ion batteries, respectively, via facile electrochemical ion exchange from Na0.44MnO2. These new compositions, NKMO and NLMO, exhibited capacities of ∼74 and 141 mAh g-1, respectively (at a rate of C/20), with excellent cycling stability. The underlying mechanistic aspects (structural changes and charge storage mechanism) in these cathode compositions were probed by combining ex situ structural, spectroscopy, and electrochemical tools. Tunnel-type Na0.44MnO2 forms a versatile cathode material for non-aqueous alkali-ion batteries.

14.
Inorg Chem ; 60(20): 15128-15130, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34597035

ABSTRACT

The crystal and magnetic structures and properties of the monoclinic form of the iron hydroxysulfate FeOHSO4 were investigated by magnetometry and neutron powder diffraction. The space group C2/c was confirmed, and the proton position was located close to that predicted by ab initio calculations. The collinear antiferromagnetic k(0,0,0) structure forming below the Néel temperature TN ∼ 125 K is described by the C2'/c' (No. 15.89) magnetic space group, with the moments along the b axis. Overall, FeOHSO4 is isostructural to FeSO4F in terms of both the crystal and magnetic structures.

15.
Phys Chem Chem Phys ; 23(34): 18283-18299, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34612373

ABSTRACT

Rechargeable batteries based on Li-ion and post Li-ion chemistry have come a long way since their inception in the early 1980s. The last four decades have witnessed steady development and discovery of myriads of cathode materials taking into account their processing, economy, and performance along with ecological sustainability. Though oxides rule the battery sector with their high energy and power density, polyanionic insertion compounds work as gold mines for designing insertion compounds with rich structural diversity leading to tuneable redox potential coupled with high structural/chemical/thermal stability. The scope of polyanionic compounds can be taken a step further by combining two or more different types of polyanions to get suites of mixed polyanionic materials. While most cathodes are built with metal polyhedra constituted by oxygen (MOm|XOm, M = 3d metals, X = P, S, Si, B, W, etc., m = 3-6), in some cases, selected oxygen sites can form bonding with hydrogen to form OH/H2O ligands. It can lead to the family of hydroxy-based mixed-polyanionic cathode materials. The presence of hydroxy components can affect the crystal structure, local chemical bonding, and electronic, magnetic, diffusivity and electrochemical properties. Employing a mineralogical survey, the current review renders a sneak peek on various hydroxy-based polyanionic cathode materials for Li-ion and post Li-ion batteries. Their crystal structure, and electrochemical properties have been overviewed to outline future research focus and scope for real-life application.

16.
Inorg Chem ; 60(16): 11974-11983, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34328325

ABSTRACT

Bifunctional electrocatalysts are pre-eminent to achieve high capacity, cycling stability, and high Coulombic efficiency for rechargeable hybrid sodium-air batteries. The current work introduces metaphosphate (Na)KCo(PO3)3 nanostructures as noble metal-free bifunctional electrocatalysts suitable for the rechargeable aqueous sodium-air battery. Prepared by the scalable solution combustion method, the metaphosphate class of (Na)KCo(PO3)3 with spherical morphology exhibited robust oxygen reduction as well as evolution activity similar to the state-of-the-art catalysts. NaCo(PO3)3 metaphosphate, when employed as an air cathode in hybrid sodium-air batteries, delivered reasonably low overpotential along with excellent cycling stability with a round-trip energy efficiency of 78%. Cobalt metaphosphates thus form a new class of economical bifunctional catalysts to develop hybrid sodium-air batteries.

17.
Chem Commun (Camb) ; 56(60): 8400-8403, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32578611

ABSTRACT

In an effort to rationally design economic electrocatalysts, zinc-substituted cobalt phosphate and pyrophosphate were prepared using facile template-free combustion synthesis. They act as efficient stable bifunctional electrocatalysts due to the tuning of oxygen affinity by zinc substitution and catalytically active cobalt sites. Exploiting their bifunctional activity, these cobalt (pyro)phosphates were incorporated into a zinc-air battery in an alkaline electrolyte.

18.
ACS Omega ; 5(13): 7219-7224, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32280862

ABSTRACT

Iron-based polyanionic materials can be exploited to realize low cost, durable, and safe cathodes for both bulk and thin film sodium-ion batteries. Herein, we report pulsed laser deposited mixed phosphate Na4Fe3(PO4)2P2O7 as a positive electrode for thin film sodium-ion microbatteries. The bulk material and thin films of Na4Fe3(PO4)2P2O7 are employed by solution combustion synthesis (SCS) and the pulsed laser deposition (PLD) technique, respectively. Phase purity and the nature of the crystallinity of the thin films were confirmed by grazing incidence X-ray diffraction and transmission electron microscopy. Identification of surface roughness and morphology was obtained from atomic force microscopy and scanning electron microscopy, respectively. Emerging electrochemical properties were observed from charge-discharge profiles of the thin films, which are well comparable to bulk material properties. The Na4Fe3(PO4)2P2O7 thin film electrodes delivered a highly reversible Na+ storage capacity of ∼120 mAh g-1 with an excellent stability of over 500 cycles. Electrochemical analysis results revealed that the thickness of the film affects the storage capacity.

19.
Chem Commun (Camb) ; 56(15): 2272-2275, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-31984386

ABSTRACT

P3-type layered K0.48Mn0.4Co0.6O2 was synthesized using a solid-state method. By stabilising into a rhombohedral structure [s.g. R3m (#160)], it delivers a reversible capacity of 64 mA h g-1 with a nominal voltage of ∼3.0 V (vs. K/K+) and it has good cycling stability. It involves a solid-solution redox mechanism, and forms an economical and stable oxide insertion material for potassium-ion batteries.

20.
Inorg Chem ; 58(24): 16823-16830, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31799837

ABSTRACT

Polymorphism and temperature-induced phase transitions of Na2CoP2O7 were studied by in situ neutron powder diffraction and complemented by ab initio calculations to reconcile previous reports of its three polymorphs. We show that the "blue" form prepared at 873 K exists at room temperature in the orthorhombic Pna21 (= P21cn) phase, which transforms via a first-order transition to the tetragonal form at the temperature close to room temperature (∼335 K). Just above the transition, the tetragonal form is likely incommensurately modulated with the modulation vanishing at ∼423 K. Above that temperature the phase remains in the unmodulated tetragonal state (P42/mnm) until melting at ∼900 K. Upon cooling after melting, Na2CoP2O7 crystallizes into the "rose" triclinic P1 form which persists while it cools to room temperature, apparently stabilized by the barrier of the reconstructive "rose"-"blue" transition. We also discuss the relationship between the tetragonal and orthorhombic structures, the driving forces of the orthorhombic distortion, and similarity to Na2ZnP2O7 and the melilite-type structural family.

SELECTION OF CITATIONS
SEARCH DETAIL
...