Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35268919

ABSTRACT

Results of the transport properties of the YbNi1-xCuxAl (x = 0, 0.2, 0.5, 0.8 and 1.0) series of alloys are reported. The previous analysis of X-ray diffraction patterns indicates that all compounds crystallize in the hexagonal ZrNiAl structure with a linear behavior of the unit cell volume as a function of the Cu concentration (x). This is not found in the unit cell parameters, showing a discontinuity between x = 0.5 and 0.8. Such discontinuities affect the behavior of the electrical resistivity, in which the position of the minimum temperature changes from 95 K to 175 K, and a rise in the low temperature slope in the magnetic contribution (with -lnT dependence) from 21 µΩcm to 212 µΩcm is observed. In addition, the electronic coefficient of the specific heat increases almost twofold from 125 mJ/mol·K2 (x = 0.5) to 246 mJ/mol·K2 (x = 0.8). These changes are attributed to the variation of the distance between Yb and transition metals (Ni and Cu) along the series and the different electronic properties of the transition metals (Ni and Cu).

2.
RSC Adv ; 11(1): 390-396, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-35423016

ABSTRACT

The attractive electronic and magnetic properties together with their biocompatibility make iron-oxide nanoparticles appear as functional materials. In Fe-oxide nanoparticle (IONP) ensembles, it is crucial to enhance their performance thanks to controlled size, shape, and stoichiometry ensembles. In light of this, we conduct a comprehensive investigation in an ensemble of ca. 28 nm cuboid-shaped IONPs in which all the analyses concur with the coexistence of magnetite/maghemite phases in their cores. Here, we are disclosing the Verwey transition by temperature dependent (4-210 K) Raman spectroscopy.

3.
Chem Commun (Camb) ; (43): 6664-6, 2009 Nov 21.
Article in English | MEDLINE | ID: mdl-19865684

ABSTRACT

The synthesis and characterization of superparamagnetic iron(iii) oxide nanowires confined within double-walled carbon nanotubes by capillary filling with a melted precursor (iron iodide) followed by thermal treatment is reported for the first time.

SELECTION OF CITATIONS
SEARCH DETAIL
...