Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Rheum Dis ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777379

ABSTRACT

OBJECTIVE: Tissue-resident memory cells (Trm) are a subset of T cells residing persistently and long-term within specific tissues that contribute to persistent inflammation and tissue damage. We characterised the phenotype and function of Trm and the role of CD103 in primary Sjogren's syndrome (pSS). METHODS: In both pSS and non-pSS sicca syndrome patients, we examined Trm frequency, cytokine production in salivary glands (SG) and peripheral blood (PB). We also analysed Trm-related gene expression in SG biopsies through bulk and single-cell RNA sequencing (scRNAseq). Additionally, we investigated Trm properties in an immunisation-induced animal model of pSS (experimental SS, ESS) mouse model and assessed the effects of Trm inhibition via intraglandular anti-CD103 monoclonal antibody administration. RESULTS: Transcriptomic pSS SG showed an upregulation of genes associated with tissue recruitment and long-term survival of Trm cells, confirmed by a higher frequency of CD8+CD103+CD69+ cells in pSS SG, compared with non-specific sialadenitis (nSS). In SG, CD8+ CD103+ Trm contributed to the secretion of granzyme-B and interferon-γ, CD8+ Trm cells were localised within inflammatory infiltrates, where PD1+CD8+ T cells were also increased compared with nSS and MALT lymphoma. scRNAseq of PB and pSS SG T cells confirmed expression of CD69, ITGAE, GZMB, GZMK and HLA-DRB1 among CD3+CD8+ SG T cells. In the SG of ESS, CD8+CD69+CD103+ Trm producing Granzyme B progressively expanded. However, intraglandular blockade of CD103 in ESS reduced Trm, reduced glandular damage and improved salivary flow. CONCLUSIONS: CD103+CD8+Trm cells are expanded in the SG of pSS and ESS, participate in tissue inflammation and can be therapeutically targeted.

2.
Cancer Immunol Immunother ; 69(10): 1959-1972, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32388678

ABSTRACT

Cancer vaccine development has proven challenging with the exception of some virally induced cancers for which prophylactic vaccines exist. Currently, there is only one FDA approved vaccine for the treatment of prostate cancer and as such prostate cancer continues to present a significant unmet medical need. In this study, we examine the effectiveness of a therapeutic cancer vaccine that combines the ISCOMATRIX™ adjuvant (ISCOMATRIX) with the Toll-like receptor 3 agonist, polyinosinic-polycytidylic acid (Poly I:C), and Flt3L, FMS-like tyrosine kinase 3 ligand. We employed the TRAMP-C1 (transgenic adenocarcinoma of the mouse prostate) model of prostate cancer and the self-protein mPAP (prostatic acid phosphatase) as the tumor antigen. ISCOMATRIX™-mPAP-Poly I:C-Flt3L was delivered in a therapeutic prime-boost regime that was consistently able to achieve complete tumor regression in 60% of animals treated and these tumor-free animals were protected upon rechallenge. Investigations into the underlying immunological mechanisms contributing to the effectiveness of this vaccine identified that both innate and adaptive responses are elicited and required. NK cells, CD4+ T cells and interferon-γ were all found to be critical for tumor control while tumor infiltrating CD8+ T cells became disabled by an immunosuppressive microenvironment. There is potential for broader application of this cancer vaccine, as we have been able to demonstrate effectiveness in two additional cancer models; melanoma (B16-OVA) and a model of B cell lymphoma (Eµ-myc-GFP-OVA).


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/administration & dosage , Cholesterol/administration & dosage , Melanoma, Experimental/immunology , Phospholipids/administration & dosage , Prostatic Neoplasms/immunology , Saponins/administration & dosage , Animals , Apoptosis , CD8-Positive T-Lymphocytes/drug effects , Cell Proliferation , Disease Models, Animal , Drug Combinations , Humans , Interferon-gamma/metabolism , Male , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Membrane Proteins/immunology , Mice , Mice, Inbred C57BL , Ovalbumin/immunology , Poly I-C/administration & dosage , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Tumor Cells, Cultured , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...