Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 36(14): 2746-8, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21765529

ABSTRACT

All-reflective optical systems are under consideration for future gravitational wave detector topologies. A key feature of these all-reflective systems is the use of Fabry-Perot cavities with diffraction gratings as input couplers; however, theory predicts and experiment has shown that translation of the grating surface across the incident laser light will introduce additional phase into the system. This translation can be induced through simple side-to-side motion of the coupler, yaw motion of the coupler around a central point (i.e., rotation about a vertical axis), and even via internal resonances (i.e., vibration) of the optical element. In this Letter we demonstrate on a prototype-scale suspended cavity that conventional cavity length-sensing techniques used to detect longitudinal changes along the cavity axis will also be sensitive to translational, rotational, and vibrational motion of the diffractive input coupler. We also experimentally verify the amplitude response and frequency dependency of the noise coupling as given by theory.

2.
Opt Lett ; 34(20): 3184-6, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19838267

ABSTRACT

All-reflective optical systems are under consideration for future gravitational wave detector topologies. One approach in proposed designs is to use diffraction gratings as input couplers for Fabry-Perot cavities. We present an experimental demonstration of a fully suspended diffractively coupled cavity and investigate the use of conventional Pound-Drever-Hall length sensing and control techniques to maintain the required operating condition.

3.
Appl Opt ; 46(31): 7739-45, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17973018

ABSTRACT

We present a discussion of the use of amplitude modulation techniques with regard to the length sensing and control of optical cavities for laser interferometric gravitational-wave detectors. Traditional radio-frequency amplitude modulation techniques automatically include phase modulation as a product of the modulation process, which can contaminate the signal after demodulation. In particular, with many length-sensing and control schemes the detected signals are demodulated in quadrature, which, in the case of a traditional amplitude modulation scheme, will result in offsets due to the additional phase modulation. We demonstrate this effect using a simple optical cavity configuration and show that minor adjustments to the modulator system can be used to compensate for the extra modulation components and provide additional flexibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...