Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1179857, 2023.
Article in English | MEDLINE | ID: mdl-37520355

ABSTRACT

The terrestrial serpentinite-hosted ecosystem known as "The Cedars" is home to a diverse microbial community persisting under highly alkaline (pH ~ 12) and reducing (Eh < -550 mV) conditions. This extreme environment presents particular difficulties for microbial life, and efforts to isolate microorganisms from The Cedars over the past decade have remained challenging. Herein, we report the initial physiological assessment and/or full genomic characterization of three isolates: Paenibacillus sp. Cedars ('Paeni-Cedars'), Alishewanella sp. BS5-314 ('Ali-BS5-314'), and Anaerobacillus sp. CMMVII ('Anaero-CMMVII'). Paeni-Cedars is a Gram-positive, rod-shaped, mesophilic facultative anaerobe that grows between pH 7-10 (minimum pH tested was 7), temperatures 20-40°C, and 0-3% NaCl concentration. The addition of 10-20 mM CaCl2 enhanced growth, and iron reduction was observed in the following order, 2-line ferrihydrite > magnetite > serpentinite ~ chromite ~ hematite. Genome analysis identified genes for flavin-mediated iron reduction and synthesis of a bacillibactin-like, catechol-type siderophore. Ali-BS5-314 is a Gram-negative, rod-shaped, mesophilic, facultative anaerobic alkaliphile that grows between pH 10-12 and temperatures 10-40°C, with limited growth observed 1-5% NaCl. Nitrate is used as a terminal electron acceptor under anaerobic conditions, which was corroborated by genome analysis. The Ali-BS5-314 genome also includes genes for benzoate-like compound metabolism. Anaero-CMMVII remained difficult to cultivate for physiological studies; however, growth was observed between pH 9-12, with the addition of 0.01-1% yeast extract. Anaero-CMMVII is a probable oxygen-tolerant anaerobic alkaliphile with hydrogenotrophic respiration coupled with nitrate reduction, as determined by genome analysis. Based on single-copy genes, ANI, AAI and dDDH analyses, Paeni-Cedars and Ali-BS5-314 are related to other species (P. glucanolyticus and A. aestuarii, respectively), and Anaero-CMMVII represents a new species. The characterization of these three isolates demonstrate the range of ecophysiological adaptations and metabolisms present in serpentinite-hosted ecosystems, including mineral reduction, alkaliphily, and siderophore production.

2.
Front Microbiol ; 14: 1312843, 2023.
Article in English | MEDLINE | ID: mdl-38249476

ABSTRACT

Macroalgae, commonly known as seaweed, are foundational species in coastal ecosystems and contribute significantly to coastal primary production globally. However, the impact of macroalgal decomposition on benthic biological nitrogen fixation (BNF) after deposition to the seafloor remains largely unexplored. In this study, we measure BNF rates at three different sites at the Big Fisherman's Cove on Santa Catalina Island, CA, USA, which is representative of globally distributed rocky bottom macroalgal habitats. Unamended BNF rates varied among sites (0.001-0.05 nmol N g-1 h -1) and were generally within the lower end of previously reported ranges. We hypothesized that the differences in BNF between sites were linked to the availability of organic matter. Indeed, additions of glucose, a labile carbon source, resulted in 2-3 orders of magnitude stimulation of BNF rates in bottle incubations of sediment from all sites. To assess the impact of complex, autochthonous organic matter, we simulated macroalgal deposition and remineralization with additions of brown (i.e., Macrocystis pyrifera and Dictyopteris), green (i.e., Codium fragile), and red (i.e., Asparagopsis taxiformis) macroalgae. While brown and green macroalgal amendments resulted in 53- to 520-fold stimulation of BNF rates-comparable to the labile carbon addition-red alga was found to significantly inhibit BNF rates. Finally, we employed nifH sequencing to characterize the diazotrophic community associated with macroalgal decomposition. We observed a distinct community shift in potential diazotrophs from primarily Gammaproteobacteria in the early stages of remineralization to a community dominated by Deltaproteobacteria (e.g., sulfate reducers), Bacteroidia, and Spirochaeta toward the latter phase of decomposition of brown, green, and red macroalgae. Notably, the nifH-containing community associated with red macroalgal detritus was distinct from that of brown and green macroalgae. Our study suggests coastal benthic diazotrophs are limited by organic carbon and demonstrates a significant and phylum-specific effect of macroalgal loading on benthic microbial communities.

3.
Article in English | MEDLINE | ID: mdl-35194649

ABSTRACT

Magnetotactic bacteria (MTB) are a diverse group of highly motile Gram-negative microorganisms with the common ability to orient along magnetic field lines, a behavior known as magnetotaxis. Ubiquitous in aquatic sediment environments, MTB are often microaerophilic and abundant at the oxic/anoxic interface. Magnetic field sensing is accomplished using intracellular, membrane-encased, iron-containing minerals known as magnetosomes. The chemistry, morphology and arrangement of magnetosomes differs substantially among different MTB. Although magnetic field sensing mechanisms, genetic bases and protein functions have been elucidated in select model organisms such as the Magnetospirillum strains and Desulfovibrio RS-1, not all findings are applicable to diverse clades of MTB. As the number of identified species has increased, it has become evident that many of the characteristics and mechanisms once presumed to be prototypical of MTB are in fact not universal. Here we present a general overview of the current state of MTB research for readers outside of the realm of prokaryotic research, focusing on recent discoveries, knowledge gaps and future directions. In addition, we report new insights acquired using holographic technology to observe and quantify microbial responses in magnetic fields that are earth-strength or weaker, providing a new ecophysiological approach to in situ MTB research.


Subject(s)
Magnetosomes , Microscopy , Animals , Bacteria/genetics , Magnetosomes/chemistry , Magnetosomes/genetics , Magnetosomes/metabolism , Phylogeny
4.
Article in English | MEDLINE | ID: mdl-34379584

ABSTRACT

Three highly alkaliphilic bacterial strains designated as A1T, H1T and B1T were isolated from two highly alkaline springs at The Cedars, a terrestrial serpentinizing site. Cells from all strains were motile, Gram-negative and rod-shaped. Strains A1T, H1T and B1T were mesophilic (optimum, 30 °C), highly alkaliphilic (optimum, pH 11) and facultatively autotrophic. Major cellular fatty acids were saturated and monounsaturated hexadecenoic and octadecanoic acids. The genome size of strains A1T, H1T and B1T was 2 574 013, 2 475 906 and 2 623 236 bp, and the G+C content was 66.0, 66.2 and 66.1 mol%, respectively. Analysis of the 16S rRNA genes showed the highest similarity to the genera Malikia (95.1-96.4 %), Macromonas (93.0-93.6 %) and Hydrogenophaga (93.0-96.6 %) in the family Comamonadaceae. Phylogenetic analysis based on 16S rRNA gene and phylogenomic analysis based on core gene sequences revealed that the isolated strains diverged from the related species, forming a distinct branch. Average amino acid identity values of strains A1T, H1T and B1T against the genomes of related members in this family were below 67 %, which is below the suggested threshold for genera boundaries. Average nucleotide identity by blast values and digital DNA-DNA hybridization among the three strains were below 92.0 and 46.6 % respectively, which are below the suggested thresholds for species boundaries. Based on phylogenetic, genomic and phenotypic characterization, we propose Serpentinimonas gen. nov., Serpentinimonas raichei sp. nov. (type strain A1T=NBRC 111848T=DSM 103917T), Serpentinimonas barnesii sp. nov. (type strain H1T= NBRC 111849T=DSM 103920T) and Serpentinimonas maccroryi sp. nov. (type strain B1T=NBRC 111850T=DSM 103919T) belonging to the family Comamonadaceae. We have designated Serpentinimonas raichei the type species for the genus because it is the dominant species in The Cedars springs.


Subject(s)
Comamonadaceae , Phylogeny , Water Microbiology , Bacterial Typing Techniques , Base Composition , Comamonadaceae/classification , Comamonadaceae/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
5.
Front Microbiol ; 10: 1979, 2019.
Article in English | MEDLINE | ID: mdl-31555224

ABSTRACT

The diversity of microbially mediated redox processes that occur in marine sediments is likely underestimated, especially with respect to the metabolisms that involve solid substrate electron donors or acceptors. Though electrochemical studies that utilize poised potential electrodes as a surrogate for solid substrate or mineral interactions have shed some much needed light on these areas, these studies have traditionally been limited to one redox potential or metabolic condition. This work seeks to uncover the diversity of microbes capable of accepting cathodic electrons from a marine sediment utilizing a range of redox potentials, by coupling electrochemical enrichment approaches to microbial cultivation and isolation techniques. Five lab-scale three-electrode electrochemical systems were constructed, using electrodes that were initially incubated in marine sediment at cathodic or electron-donating voltages (five redox potentials between -400 and -750 mV versus Ag/AgCl) as energy sources for enrichment. Electron uptake was monitored in the laboratory bioreactors and linked to the reduction of supplied terminal electron acceptors (nitrate or sulfate). Enriched communities exhibited differences in community structure dependent on poised redox potential and terminal electron acceptor used. Further cultivation of microbes was conducted using media with reduced iron (Fe0, FeCl2) and sulfur (S0) compounds as electron donors, resulting in the isolation of six electrochemically active strains. The isolates belong to the genera Vallitalea of the Clostridia, Arcobacter of the Epsilonproteobacteria, Desulfovibrio of the Deltaproteobacteria, and Vibrio and Marinobacter of the Gammaproteobacteria. Electrochemical characterization of the isolates with cyclic voltammetry yielded a wide range of midpoint potentials (99.20 to -389.1 mV versus Ag/AgCl), indicating diverse metabolic pathways likely support the observed electron uptake. Our work demonstrates culturing under various electrochemical and geochemical regimes allows for enhanced cultivation of diverse cathode-oxidizing microbes from one environmental system. Understanding the mechanisms of solid substrate oxidation from environmental microbes will further elucidation of the ecological relevance of these electron transfer interactions with implications for microbe-electrode technologies.

6.
Int J Syst Evol Microbiol ; 68(5): 1652-1658, 2018 May.
Article in English | MEDLINE | ID: mdl-29570444

ABSTRACT

A taxonomic and physiologic characterization was carried out on Thioclava strain ElOx9T, which was isolated from a bacterial consortium enriched on electrodes poised at electron donating potentials. The isolate is Gram-negative, catalase-positive and oxidase-positive; the cells are motile short rods. The bacterium is facultatively anaerobic with the ability to utilize nitrate as an electron acceptor. Autotrophic growth with H2 and S0 (oxidized to sulfate) was observed. The isolate also grows heterotrophically with organic acids and sugars. Growth was observed at salinities from 0 to 10% NaCl and at temperatures from 15 to 41 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain belongs in the genus Thioclava; it had the highest sequence similarity of 98.8 % to Thioclava atlantica 13D2W-2T, followed by Thioclava dalianensis DLFJ1-1T with 98.5 % similarity, Thioclava pacifica TL 2T with 97.7 % similarity, and then Thioclava indica DT23-4T with 96.9 %. All other sequence similarities were below 97 % to characterized strains. The digital DNA-DNA hybridization estimated when compared to T. atlantica 13D2W-2T, T. dalianensis DLFJ1-1T, T. pacifica TL 2T and T. indica DT23-4T were 15.8±2.1, 16.7+2.1, 14.3±1.9 and 18.3±2.1 %. The corresponding average nucleotide identity values between these strains were determined to be 65.1, 67.8, 68.4 and 64.4 %, respectively. The G+C content of the chromosomal DNA is 63.4 mol%. Based on these results, a novel species Thioclava electrotropha sp. nov. is proposed, with the type strain ElOx9T (=DSM 103712T=ATCC TSD-100T).


Subject(s)
Geologic Sediments/microbiology , Phylogeny , Rhodobacteraceae/classification , Seawater/microbiology , Autotrophic Processes , Bacterial Typing Techniques , Base Composition , California , DNA, Bacterial/genetics , Electrodes , Fatty Acids/chemistry , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/genetics , Rhodobacteraceae/isolation & purification , Salinity , Sequence Analysis, DNA
7.
J Vis Exp ; (129)2017 11 01.
Article in English | MEDLINE | ID: mdl-29155763

ABSTRACT

Accurately detecting and counting sparse bacterial samples has many applications in the food, beverage, and pharmaceutical processing industries, in medical diagnostics, and for life detection by robotic missions to other planets and moons of the solar system. Currently, sparse bacterial samples are counted by culture plating or epifluorescence microscopy. Culture plates require long incubation times (days to weeks), and epifluorescence microscopy requires extensive staining and concentration of the sample. Here, we demonstrate how to use off-axis digital holographic microscopy (DHM) to enumerate bacteria in very dilute cultures (100-104 cells/mL). First, the construction of the custom DHM is discussed, along with detailed instructions on building a low-cost instrument. The principles of holography are discussed, and a statistical model is used to estimate how long videos should be to detect cells, based on the optical performance characteristics of the instrument and the concentration of the bacterial solution (Table 2). Video detection of cells at 105, 104, 103, and 100 cells/mL is demonstrated in real time using un-reconstructed holograms. Reconstruction of amplitude and phase images is demonstrated using an open-source software package.


Subject(s)
Holography/methods , Microscopy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...