Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Med ; 24(9): 1941-1951, 2022 09.
Article in English | MEDLINE | ID: mdl-35678782

ABSTRACT

PURPOSE: WNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown. METHOD: We ascertained exome or genome sequences of individuals with rare familial or sporadic forms of intellectual disability (ID). RESULTS: We identified a total of 6 different maternally-inherited, hemizygous, 3 loss-of-function or 3 pathogenic missense variants (p.Pro204Arg, p.Leu300Ser, p.Glu607Val) in WNK3 in 14 male individuals from 6 unrelated families. Affected individuals had ID with variable presence of epilepsy and structural brain defects. WNK3 variants cosegregated with the disease in 3 different families with multiple affected individuals. This included 1 large family previously diagnosed with X-linked Prieto syndrome. WNK3 pathogenic missense variants localize to the catalytic domain and impede the inhibitory phosphorylation of the neuronal-specific chloride cotransporter KCC2 at threonine 1007, a site critically regulated during the development of synaptic inhibition. CONCLUSION: Pathogenic WNK3 variants cause a rare form of human X-linked ID with variable epilepsy and structural brain abnormalities and implicate impaired phospho-regulation of KCC2 as a pathogenic mechanism.


Subject(s)
Mental Retardation, X-Linked , Protein Serine-Threonine Kinases , Symporters , Brain/abnormalities , Catalytic Domain/genetics , Hemizygote , Humans , Loss of Function Mutation , Male , Maternal Inheritance/genetics , Mental Retardation, X-Linked/genetics , Mutation, Missense , Phosphorylation , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Symporters/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...