Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Proteomics ; 2013: 760208, 2013.
Article in English | MEDLINE | ID: mdl-24222850

ABSTRACT

The use of human urine as a diagnostic tool has many advantages, such as ease of sample acquisition and noninvasiveness. However, the discovery of novel biomarkers, as well as biomarker patterns, in urine is hindered mainly by a lack of comparable datasets. To fill this gap, we assembled a new urinary fingerprint database. Here, we report the establishment of a human urinary proteomic fingerprint database using urine from 200 individuals analysed by SELDI-TOF (surface enhanced laser desorption ionisation-time of flight) mass spectrometry (MS) on several chip surfaces (SEND, HP50, NP20, Q10, CM10, and IMAC30). The database currently lists 2490 unique peaks/ion species from 1172 nonredundant SELDI analyses in the mass range of 1500 to 150000. All unprocessed mass spectrometric scans are available as ".xml" data files. Additionally, 1384 peaks were included from external studies using CE (capillary electrophoresis)-MS, MALDI (matrix assisted laser desorption/ionisation), and CE-MALDI hybrids. We propose to use this platform as a global resource to share and exchange primary data derived from MS analyses in urinary research.

2.
Arch Physiol Biochem ; 116(4-5): 233-43, 2010.
Article in English | MEDLINE | ID: mdl-20698762

ABSTRACT

Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disease affecting cattle. Current tests for the detection of BSE are based solely on the only definitive marker of the disease, an abnormal conformer (PrP(d)), of the host encoded prion protein (PrP(c)). Recent evidence that other transmissible spongiform encephalopathy diseases can be present in the absence of PrP(d), coupled with the need to establish pre-mortem diagnostic assays have led to a search for alternative diagnostic approaches. In this study we apply differential protein expression profiling for the prediction of BSE disease in post-mortem bovine brain tissue. The protein profiles of groups of 27 BSE diseased cattle were compared with 28 control animals. Analysis using statistical learning (and linear discriminant analysis) techniques established protein markers of disease with good predictive power (sensitivity 85% and specificity 71%). Further work will be required to test the predictive markers in a wider range of diseases, particularly other neurological conditions.


Subject(s)
Biomarkers/analysis , Biomarkers/chemistry , Brain/metabolism , Encephalopathy, Bovine Spongiform/genetics , Protein Array Analysis , Proteins/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Brain/pathology , Cattle , Encephalopathy, Bovine Spongiform/diagnosis , Encephalopathy, Bovine Spongiform/metabolism , Encephalopathy, Bovine Spongiform/pathology , Female , Male , Sensitivity and Specificity
3.
BMC Infect Dis ; 9: 188, 2009 Nov 27.
Article in English | MEDLINE | ID: mdl-19943924

ABSTRACT

BACKGROUND: Transmissible spongiform encephalopathy describes a family of diseases affecting both man and animals. Current tests for the diagnosis of these diseases are based on the detection of an abnormal misfolded form of the host protein PrP which is found within the central nervous and lymphoreticular systems of affected animals. Recently, concern that this marker may not be as reliable as previously thought, coupled with an urgentneed for a pre-clinical live animal test, has led to the search for alternative assays for the detection of TSE disease. METHODS: This "proof of concept" study, examines the use of differential protein expression profiling using surface enhanced laser desorption and ionisationtime of flight mass spectrometry (SELDI-TOF) for the diagnosis of TSE disease. Spectral output from all proteins selectively captured from individual murine brain homogenate samples, are compared as "profiles" in groups of infected and non-infected animals. Differential protein expression between groups is thus highlighted and statistically significant protein "peaks" used to construct a panel of disease specific markers.Studies at both terminal stages of disease and throughout the time course of disease have shown a disease specific protein profile or "disease fingerprint" which could be used to distinguish between groups of TSE infected and uninfected animals at an early time point of disease. RESULTS: Our results show many differentially expressed proteins in diseased and control animals, some at early stages of disease. Three proteins identified by SELDI-TOF analysis were verified by immunohistochemistry in brain tissue sections. We demonstrate that by combining the most statistically significant changes in expression, a panel of markers can be constructed that can distinguish between TSE diseased and normal animals. CONCLUSION: Differential protein expression profiling has the potential to be used for the detection of disease in TSE infected animals. Having established that a "training set" of potential markers can be constructed, more work would be required to further test the specificity and sensitivity of the assay in a "testing set". Based on these promising results, further studies are being performed using blood samples from infected sheep to assess the potential use of SELDI-TOF as a pre-mortem blood based diagnostic.


Subject(s)
Prion Diseases/diagnosis , Protein Array Analysis/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Biomarkers/analysis , Brain/pathology , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Prion Diseases/blood
4.
BMC Infect Dis ; 4: 8, 2004 Mar 03.
Article in English | MEDLINE | ID: mdl-15053838

ABSTRACT

BACKGROUND: The transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases affecting both human and animals. The neuroanatomical changes which occur in the central nervous system (CNS) of TSE infected animals include vacuolation, gliosis, neuronal loss and the deposition of a disease specific protein, PrPSc. Experimental murine models of scrapie, a TSE of sheep, have revealed that pathology may be confined to specific brain areas with targeting of particular neuronal subsets depending on route of injection and scrapie isolate. To assess the biochemical changes which are taking place in these targeted areas it was necessary to develop a reliable sampling procedure (microdissection) which could be used for a variety of tests such as western blotting and magnetic resonance spectroscopy. METHODS: The method described is for the microdissection of murine brains. To assess the usefulness of this dissection technique for producing similar sample types for analysis by various down-stream biochemical techniques, the areas dissected were analysed for PrPSc by western blotting and compared to immunocytochemical (ICC) techniques. RESULTS: Results show that the method generates samples yielding a consistent protein content which can be analysed for PrPSc. The areas in which PrPSc is found by western blotting compares well with localisation visualised by immunocytochemistry. CONCLUSION: The microdisssection method described can be used to generate samples suitable for a range of biochemical techniques. Using these samples a range of assays can be carried out which will help to elucidate the molecular and cellular mechanisms underlying TSE pathogenesis. The method would also be useful for any study requiring the investigation of discrete areas within the murine brain.


Subject(s)
Blotting, Western/methods , PrPSc Proteins/analysis , Prion Diseases/metabolism , Animals , Cattle , Humans , Immunohistochemistry/methods , Magnetic Resonance Spectroscopy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...