Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Respir J ; 56(1)2020 07.
Article in English | MEDLINE | ID: mdl-32299854

ABSTRACT

Inflammation is a key feature in the pathogenesis of sepsis and acute respiratory distress syndrome (ARDS). Sepsis and ARDS continue to be associated with high mortality. A key contributory factor is the rudimentary understanding of the early events in pulmonary and systemic inflammation in humans, which are difficult to study in clinical practice, as they precede the patient's presentation to medical services. Lipopolysaccharide (LPS), a constituent of the outer membrane of Gram-negative bacteria, is a trigger of inflammation and the dysregulated host response in sepsis. Human LPS models deliver a small quantity of LPS to healthy volunteers, triggering an inflammatory response and providing a window to study early inflammation in humans. This allows biological/mechanistic insights to be made and new therapeutic strategies to be tested in a controlled, reproducible environment from a defined point in time. We review the use of human LPS models, focussing on the underlying mechanistic insights that have been gained by studying the response to intravenous and pulmonary LPS challenge. We discuss variables that may influence the response to LPS before considering factors that should be considered when designing future human LPS studies.


Subject(s)
Pneumonia , Respiratory Distress Syndrome , Humans , Inflammation , Lipopolysaccharides , Lung , Respiratory Distress Syndrome/therapy
2.
J Inflamm (Lond) ; 11: 9, 2014.
Article in English | MEDLINE | ID: mdl-24684897

ABSTRACT

BACKGROUND: We have previously reported the presence of novel subpopulations of pulmonary monocyte-like cells (PMLC) in the human lung; resident PMLC (rPMLC, HLA-DR(+)CD14(++)CD16(+)cells) and inducible PMLC (iPMLC, HLA-DR(+)CD14(++)CD16(-) cells). iPMLC are significantly increased in bronchoalveolar lavage (BAL) fluid following inhalation of lipopolysaccharide (LPS). We have carried out the first functional evaluation of PMLC subpopulations in the inflamed lung, following the isolation of these cells, and other lineages, from BAL fluid using novel and complex protocols. METHODS: iPMLC, rPMLC, alveolar macrophages (AM), neutrophils, and regulatory T cells were quantified in BAL fluid of healthy subjects at 9 hours post-LPS inhalation (n = 15). Cell surface antigen expression by iPMLC, rPMLC and AM and the ability of each lineage to proliferate and to undergo phagocytosis were investigated using flow cytometry. Basal cytokine production by iPMLC compared to AM following their isolation from BAL fluid and the responsiveness of both cell types following in vitro treatment with the synthetic corticosteroid dexamethasone were assessed. RESULTS: rPMLC have a significantly increased expression of mature macrophage markers and of the proliferation antigen Ki67, compared to iPMLC. Our cytokine data revealed a pro-inflammatory, corticosteroid-resistant phenotype of iPMLC in this model. CONCLUSIONS: These data emphasise the presence of functionally distinct subpopulations of the monocyte/macrophage lineage in the human lung in experimental acute lung inflammation.

4.
Am J Respir Crit Care Med ; 188(4): 449-55, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23627345

ABSTRACT

RATIONALE: Depletion of monocytes reduces LPS-induced lung inflammation in mice, suggesting monocytes as potential therapeutic targets in acute lung injury. OBJECTIVES: To investigate whether depletion of circulating blood monocytes has beneficial effects on markers of systemic and pulmonary inflammation in a human model of acute lung inflammation. METHODS: A total of 30 healthy volunteers were enrolled in a randomized controlled trial. Volunteers inhaled LPS at baseline, and were randomized to receive active mononuclear cell depletion by leukapheresis, or sham leukapheresis, in a double-blind fashion (15 volunteers per group). Serial blood counts were measured, bronchoalveolar lavage (BAL) was performed at 9 hours, and [(18)F]fluorodeoxyglucose positron emission tomography at 24 hours. The primary endpoint was the increment in circulating neutrophils at 8 hours. MEASUREMENTS AND MAIN RESULTS: As expected, inhalation of LPS induced neutrophilia and an up-regulation of inflammatory mediators in the blood and lungs of all volunteers. There was no significant difference between the depletion and sham groups in the mean increment in blood neutrophil count at 8 hours (6.16 × 10(9)/L and 6.15 × 10(9)/L, respectively; P = 1.00). Furthermore, there were no significant differences in BAL neutrophils or protein, positron emission tomography-derived measures of global lung inflammation, or cytokine levels in plasma or BAL supernatant between the study groups. No serious adverse events occurred, and no symptoms were significantly different between the groups. CONCLUSIONS: These findings do not support a role for circulating human monocytes in the early recruitment of neutrophils during LPS-mediated acute lung inflammation in humans.


Subject(s)
Inflammation Mediators/physiology , Leukapheresis , Adolescent , Adult , Bronchoalveolar Lavage , Cytokines/blood , Double-Blind Method , Humans , Leukocytes, Mononuclear , Male , Up-Regulation/physiology , Young Adult
5.
Blood ; 117(19): 5178-88, 2011 May 12.
Article in English | MEDLINE | ID: mdl-21292772

ABSTRACT

Critically ill patients are at heightened risk for nosocomial infections. The anaphylatoxin C5a impairs phagocytosis by neutrophils. However, the mechanisms by which this occurs and the relevance for acquisition of nosocomial infection remain undetermined. We aimed to characterize mechanisms by which C5a inhibits phagocytosis in vitro and in critically ill patients, and to define the relationship between C5a-mediated dysfunction and acquisition of nosocomial infection. In healthy human neutrophils, C5a significantly inhibited RhoA activation, preventing actin polymerization and phagocytosis. RhoA inhibition was mediated by PI3Kδ. The effects on RhoA, actin, and phagocytosis were fully reversed by GM-CSF. Parallel observations were made in neutrophils from critically ill patients, that is, impaired phagocytosis was associated with inhibition of RhoA and actin polymerization, and reversed by GM-CSF. Among a cohort of 60 critically ill patients, C5a-mediated neutrophil dysfunction (as determined by reduced CD88 expression) was a strong predictor for subsequent acquisition of nosocomial infection (relative risk, 5.8; 95% confidence interval, 1.5-22; P = .0007), and remained independent of time effects as assessed by survival analysis (hazard ratio, 5.0; 95% confidence interval, 1.3-8.3; P = .01). In conclusion, this study provides new insight into the mechanisms underlying immunocompromise in critical illness and suggests novel avenues for therapy and prevention of nosocomial infection.


Subject(s)
Complement C5a/immunology , Critical Illness , Cross Infection/immunology , Neutrophils/immunology , Phagocytosis/immunology , Actins/immunology , Actins/metabolism , Cell Separation , Cross Infection/epidemiology , Flow Cytometry , Humans , Polymerization , rhoA GTP-Binding Protein/immunology , rhoA GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...