Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 6069, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30988340

ABSTRACT

Elevated atmospheric CO2 concentrations are contributing to ocean acidification (reduced seawater pH and carbonate concentrations), with potentially major ramifications for marine ecosystems and their functioning. Using a novel in situ experiment we examined impacts of reduced seawater pH on Antarctic sea ice-associated microalgal communities, key primary producers and contributors to food webs. pH levels projected for the following decades-to-end of century (7.86, 7.75, 7.61), and ambient levels (7.99), were maintained for 15 d in under-ice incubation chambers. Light, temperature and dissolved oxygen within the chambers were logged to track diurnal variation, with pH, O2, salinity and nutrients assessed daily. Uptake of CO2 occurred in all treatments, with pH levels significantly elevated in the two extreme treatments. At the lowest pH, despite the utilisation of CO2 by the productive microalgae, pH did not return to ambient levels and carbonate saturation states remained low; a potential concern for organisms utilising this under-ice habitat. However, microalgal community biomass and composition were not significantly affected and only modest productivity increases were noted, suggesting subtle or slightly positive effects on under-ice algae. This in situ information enables assessment of the influence of future ocean acidification on under-ice community characteristics in a key coastal Antarctic habitat.

2.
Mar Pollut Bull ; 67(1-2): 203-16, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23260648

ABSTRACT

A survey of tissue-δ(15)N and tissue-N values in the green macroalga, Ulva, was conducted around the coast of New Zealand to determine if these indices could be used as indicators of anthropogenic nutrient loading in coastal waters. In addition, data from four case studies showed temporal and spatial responses of tissue-δ(15)N and tissue-N in Ulva to significant terrestrial nutrient inputs. Tissue-δ(15)N in Ulva from 'natural' exposed coastal sites showed a relatively narrow baseline range of values (6.6±0.1-8.8±0.1‰) in both summer and winter that was consistent throughout New Zealand. Departures in Ulva tissue-δ(15)N ratios outside this range, particularly when coupled with high (>3.1%) tissue-N values, indicate significant contributions of terrestrially-derived nitrogen to coastal seawater. We note that tissue-N content is also affected by exposure, light and season; however provided such factors are taken into account Ulva can be a cost-effective indicator of relative changes in both source and amount of nitrogen-loading.


Subject(s)
Nitrogen/metabolism , Ulva/metabolism , Water Pollutants, Chemical/metabolism , New Zealand , Nitrogen/analysis , Nitrogen/standards , Nitrogen Isotopes/analysis , Nitrogen Isotopes/metabolism , Seawater/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...