Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 298(7): 101992, 2022 07.
Article in English | MEDLINE | ID: mdl-35490781

ABSTRACT

Topoisomerase II Binding Protein 1 (TOPBP1) is an important activator of the DNA damage response kinase Ataxia Telangiectasia and Rad3-related (ATR), although the mechanism by which this activation occurs is not yet known. TOPBP1 contains nine copies of the BRCA1 C-terminal repeat (BRCT) motif, which allows protein-protein and protein-DNA interactions. TOPBP1 also contains an ATR activation domain (AAD), which physically interacts with ATR and its partner ATR-interacting protein (ATRIP) in a manner that stimulates ATR kinase activity. It is unclear which of TOPBP1's nine BRCT domains participate in the reaction, as well as the individual roles played by these relevant BRCT domains. To address this knowledge gap, here, we delineated a minimal TOPBP1 that can activate ATR at DNA double-strand breaks in a regulated manner. We named this minimal TOPBP1 "Junior" and we show that Junior is composed of just three regions: BRCT0-2, the AAD, and BRCT7&8. We further defined the individual functions of these three regions by showing that BRCT0-2 is required for recruitment to DNA double-strand breaks and is dispensable thereafter, and that BRCT7&8 is dispensable for recruitment but essential to allow the AAD to multimerize and activate ATR. The delineation of TOPBP1 Junior creates a leaner, simplified, and better understood TOPBP1 and provides insight into the mechanism of ATR activation.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Carrier Proteins , DNA Breaks, Double-Stranded , DNA-Binding Proteins , Nuclear Proteins , Xenopus Proteins , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Phosphorylation , Protein Binding , Xenopus , Xenopus Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...