Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970365

ABSTRACT

MOTIVATION: As more behavioural assays are carried out in large-scale experiments on Drosophila larvae, the definitions of the archetypal actions of a larva are regularly refined. In addition, video recording and tracking technologies constantly evolve. Consequently, automatic tagging tools for Drosophila larval behaviour must be retrained to learn new representations from new data. However, existing tools cannot transfer knowledge from large amounts of previously accumulated data.We introduce LarvaTagger, a piece of software that combines a pre-trained deep neural network, providing a continuous latent representation of larva actions for stereotypical behaviour identification, with a graphical user interface to manually tag the behaviour and train new automatic taggers with the updated ground truth. RESULTS: We reproduced results from an automatic tagger with high accuracy, and we demonstrated that pre-training on large databases accelerates the training of a new tagger, achieving similar prediction accuracy using less data. AVAILABILITY: All the code is free and open source. Docker images are also available. See gitlab.pasteur.fr/nyx/LarvaTagger.jl. SUPPLEMENTARY INFORMATION: Supplementary material is available at Bioinformatics online.

2.
Phys Rev E ; 105(1-1): 014604, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35193281

ABSTRACT

We investigate simple models of a monodisperse system of soft, frictionless disks flowing through a two-dimensional microchannel in the presence of a single or a double constriction using Brownian dynamics simulation. After a transient time, a stationary state is observed with an increase in particle density before the constriction and a depletion after it. For a constriction width to particle diameter ratio of less than 3, the mean particle velocity is reduced compared to the unimpeded flow and it falls to zero for ratios of less than 1. At low temperatures, the particle mean velocity may vary nonmonotonically with the constriction width. The associated intermittent behavior is due to the formation of small arches of particles with a finite lifetime. The distribution of the interparticle exit times rises rapidly at short times followed by an exponential decay with a large characteristic time, while the cascade size distribution displays prominent peaks for specific cluster sizes. Although the dependence of the mean velocity on the separation of two constrictions is not simple, the mean flow velocity of a system with a single constriction provides an upper envelope for the system with two constrictions. We also examine the orientation of the leading pair of particles in front of the constriction(s). With a single constriction in the intermittent regime, there is a strong preference for the leading pair to be orientated perpendicular to the flow. When two constrictions are present, orientations parallel to the flow are much more likely at the second constriction.

3.
PLoS Genet ; 16(2): e1008589, 2020 02.
Article in English | MEDLINE | ID: mdl-32059010

ABSTRACT

Nervous systems have the ability to select appropriate actions and action sequences in response to sensory cues. The circuit mechanisms by which nervous systems achieve choice, stability and transitions between behaviors are still incompletely understood. To identify neurons and brain areas involved in controlling these processes, we combined a large-scale neuronal inactivation screen with automated action detection in response to a mechanosensory cue in Drosophila larva. We analyzed behaviors from 2.9x105 larvae and identified 66 candidate lines for mechanosensory responses out of which 25 for competitive interactions between actions. We further characterize in detail the neurons in these lines and analyzed their connectivity using electron microscopy. We found the neurons in the mechanosensory network are located in different regions of the nervous system consistent with a distributed model of sensorimotor decision-making. These findings provide the basis for understanding how selection and transition between behaviors are controlled by the nervous system.


Subject(s)
Action Potentials/physiology , Binding, Competitive , Mechanotransduction, Cellular/physiology , Neural Pathways/physiology , Neurons/physiology , Sensory Receptor Cells/physiology , Synaptic Transmission/physiology , Animals , Animals, Genetically Modified , Binding, Competitive/physiology , Brain/anatomy & histology , Brain/metabolism , Brain Mapping , Cues , Drosophila melanogaster/genetics , Neural Pathways/metabolism , Neurons/metabolism , Phenotype
4.
Phys Rev E ; 99(4-1): 042119, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31108653

ABSTRACT

We model a particulate flow of constant velocity through confined geometries, ranging from a single channel to a bundle of N_{c} identical coupled channels, under conditions of reversible blockage. Quantities of interest include the exiting particle flux (or throughput) and the probability that the bundle is open. For a constant entering flux, the bundle evolves through a transient regime to a steady state. We present analytic solutions for the stationary properties of a single channel with capacity N≤3 and for a bundle of channels each of capacity N=1. For larger values of N and N_{c}, the system's steady state behavior is explored by numerical simulation. Depending on the deblocking time, the exiting flux either increases monotonically with intensity or displays a maximum at a finite intensity. For large N we observe an abrupt change from a state with few blockages to one in which the bundle is permanently blocked and the exiting flux is due entirely to the release of blocked particles. We also compare the relative efficiency of coupled and uncoupled bundles. For N=1 the coupled system is always more efficient, but for N>1 the behavior is more complex.

5.
J Phys Condens Matter ; 30(30): 304004, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29923835

ABSTRACT

Particle conveying channels may be bundled together. The limited carrying capacity of the constituent channels may cause the bundle to be subject to blockages. If coupled, the blockage of one channel causes an increase in the flux entering the others, leading to a cascade of failures. Once all the channels are blocked, no additional particles may enter the system. If the blockages are of finite duration, the system reaches a steady state with an exiting flux that is reduced compared to the incoming one. We propose a stochastic model consisting of N c channels, each with a blocking threshold of N particles. Particles enter the system's open channels according to a Poisson process, with an equally distributed input flux of intensity Λ. In an open channel the leading particle exits at a rate µ and a blocked channel unblocks at a rate [Formula: see text], where [Formula: see text]. We present and explain the methodology of an analytical description of the behavior of bundled channels. This leads to exact expressions for the steady-state output flux, for [Formula: see text], which promises to extend to arbitrary N c and N. The results are applied to compare the efficiency of conveying a particulate stream of intensity Λ using a single, high capacity (HC) channel with multiple channels of a proportionately reduced low capacity (LC). The HC channel is more efficient at low input intensities, while the multiple LC channels have a higher throughput at high intensities. We also compare [Formula: see text] coupled channels, each of capacity N = 2 with the corresponding number of independent channels of the same capacity. For [Formula: see text], if [Formula: see text], the coupled channels are always more efficient. Otherwise the independent channels are more efficient for sufficiently large Λ.

6.
Food Chem ; 199: 246-51, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26775967

ABSTRACT

Enzymatic hydrolysis of whey protein (WP) was carried out under pH-controlled and non pH-controlled conditions using papain and a microbial-derived alternative (papain-like activity). The impact of such conditions on physicochemical and bioactive properties was assessed. WP hydrolysates (WPH) generated with the same enzyme displayed similar degree of hydrolysis. However, their reverse-phase liquid chromatograph mass spectrometry peptide profiles differed. A significantly higher oxygen radical absorbance capacity (ORAC) value was obtained for WP hydrolysed with papain at constant pH of 7.0 compared to the associated WPH generated without pH regulation. In contrast, there was no significant effect of pH regulation on dipeptidyl peptidase IV (DPP-IV) properties. WP hydrolysed with papain-like activity under pH regulation at 7.0 displayed higher ORAC activity and DPP-IV inhibitory properties compared to the associated WPH generated without pH regulation. This study has demonstrated that pH conditions during WPH generation may impact on peptide release and therefore on WPH bioactive properties.


Subject(s)
Protein Hydrolysates/metabolism , Whey Proteins/metabolism , Dipeptidyl Peptidase 4/metabolism , Free Radical Scavengers/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Mass Spectrometry , Papain/metabolism , Peptides/chemistry , Peptides/metabolism , Protein Hydrolysates/chemistry , Reactive Oxygen Species/chemistry , Whey Proteins/chemistry , Whey Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...