Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 21637, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38062077

ABSTRACT

Although it is well established that platelet-activated receptor (PAF) and protease-activated receptor 2 (PAR2) play a pivotal role in the pathophysiology of lung and airway inflammatory diseases, a role for a PAR2-PAFR cooperation in lung inflammation has not been investigated. Here, we investigated the role of PAR2 in PAF-induced lung inflammation and neutrophil recruitment in lungs of BALB/c mice. Mice were pretreated with the PAR2 antagonist ENMD1068, PAF receptor (PAFR) antagonist WEB2086, or aprotinin prior to intranasal instillation of carbamyl-PAF (C-PAF) or the PAR2 agonist peptide SLIGRL-NH2 (PAR2-AP). Leukocyte infiltration in bronchoalveolar lavage fluid (BALF), C-X-C motif ligand 1 (CXCL)1 and CXCL2 chemokines, myeloperoxidase (MPO), and N-acetyl-glycosaminidase (NAG) levels in BALF, or lung inflammation were evaluated. Intracellular calcium signaling, PAFR/PAR2 physical interaction, and the expression of PAR2 and nuclear factor-kappa B (NF-КB, p65) transcription factor were investigated in RAW 264.7 cells stimulated with C-PAF in the presence or absence of ENMD1068. C-PAF- or PAR2-AP-induced neutrophil recruitment into lungs was inhibited in mice pretreated with ENMD1068 and aprotinin or WEB2086, respectively. PAR2 blockade impaired C-PAF-induced neutrophil rolling and adhesion, lung inflammation, and production of MPO, NAG, CXCL1, and CXCL2 production in lungs of mice. PAFR activation reduced PAR2 expression and physical interaction of PAR2 and PAFR; co-activation is required for PAFR/PAR2 physical interaction. PAR2 blockade impaired C-PAF-induced calcium signal and NF-κB p65 translocation in RAW 264.7 murine macrophages. This study provides the first evidence for a cooperation between PAFR and PAR2 mediating neutrophil recruitment, lung inflammation, and macrophage activation.


Subject(s)
NF-kappa B , Pneumonia , Mice , Animals , NF-kappa B/metabolism , Platelet Activating Factor/metabolism , Receptor, PAR-2/genetics , Receptor, PAR-2/metabolism , Receptors, G-Protein-Coupled/metabolism , Aprotinin/metabolism , Neutrophil Infiltration , Transcriptional Activation , Pneumonia/chemically induced
2.
Inflamm Res ; 71(4): 439-448, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35274151

ABSTRACT

OBJECTIVE: This study was conducted to investigate the effects of the synthetic PAR2 agonist peptide (PAR2-AP) SLIGRL-NH2 on LPS-induced inflammatory mechanisms in peritoneal macrophages. METHODS: Peritoneal macrophages obtained from C57BL/6 mice were incubated with PAR2-AP and/or LPS, and the phagocytosis of zymosan fluorescein isothiocyanate (FITC) particles; nitric oxide (NO), reactive oxygen species (ROS), and cytokine production; and inducible NO synthase (iNOS) expression in macrophages co-cultured with PAR-2-AP/LPS were evaluated. RESULTS: Co-incubation of macrophages with PAR2AP (30 µM)/LPS (100 ng/mL) enhanced LPS-induced phagocytosis; production of NO, ROS, and the pro-inflammatory cytokines interleukin (IL)-1ß, tumour necrosis factor (TNF)-α, IL-6, and C-C motif chemokine ligand (CCL)2; and iNOS expression and impaired the release of the anti-inflammatory cytokine IL-10 after 4 h of co-stimulation. In addition, PAR2AP increased the LPS-induced translocation of the p65 subunit of the pro-inflammatory transcription factor nuclear factor kappa B (NF-κB) and reduced the expression of inhibitor of NF-κB. CONCLUSION: This study provides evidence of a role for PAR2 in macrophage response triggered by LPS enhancing the phagocytic activity and NO, ROS, and cytokine production, resulting in the initial and adequate macrophage response required for their innate response mechanisms.


Subject(s)
Lipopolysaccharides , NF-kappa B , Animals , Cytokines/metabolism , Lipopolysaccharides/pharmacology , Macrophages , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Reactive Oxygen Species/metabolism , Receptor, PAR-2/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
Biomed Pharmacother ; 144: 112310, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34678720

ABSTRACT

This study aims to demonstrate the applicability and importance of zebrafish (Danio rerio) model to study acute and chronic inflammatory responses induced by different stimuli: carrageenan phlogogen (nonimmune); acute infection by bacteria (immune); foreign body reaction (chronic inflammation by round glass coverslip implantation); reaction induced by xenotransplantation. In addition to the advantages of presenting low breeding cost, high prolificity, transparent embryos, high number of individuals belonging to the same spawning and high genetic similarity that favor translational responses to vertebrate organisms like humans, zebrafish proved to be an excellent tool, allowing the evaluation of edema formation, accumulation of inflammatory cells in the exudate, mediators, signaling pathways, gene expression and production of specific proteins. Our studies demonstrated the versatility of fish models to investigate the inflammatory response and its pathophysiology, essential for the successful development of studies to discover innovative pharmacological strategies.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Drug Discovery , Edema/prevention & control , Inflammation/prevention & control , Animals , Disease Models, Animal , Edema/etiology , Edema/genetics , Edema/metabolism , Female , Gene Expression Regulation , Inflammation/etiology , Inflammation/genetics , Inflammation/metabolism , Male , Signal Transduction , Time Factors , Zebrafish
5.
Inflamm Res ; 69(10): 1059-1070, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32632517

ABSTRACT

OBJECTIVE: This study aims to investigate the role of protease-activated receptor (PAR) 2 and mast cell (MC) tryptase in LPS-induced lung inflammation and neutrophil recruitment in the lungs of C57BL/6 mice. METHODS: C57BL/6 mice were pretreated with the PAR2 antagonist ENMD-1068, compound 48/80 or aprotinin prior to intranasal instillation of MC tryptase or LPS. Blood leukocytes, C-X-C motif chemokine ligand (CXCL) 1 production leukocytes recovered from bronchoalveolar lavage fluid (BALF), and histopathological analysis of the lung were evaluated 4 h later. Furthermore, we performed experiments to determine intracellular calcium signaling in RAW 264.7 cells stimulated with LPS in the presence or absence of a protease inhibitor cocktail or ENMD-1068 and evaluated PAR2 expression in the lungs of LPS-treated mice. RESULTS: Pharmacological blockade of PAR2 or inhibition of proteases reduced neutrophils recovered in BALF and LPS-induced calcium signaling. PAR2 blockade impaired LPS-induced lung inflammation, PAR2 expression in the lung and CXCL1 release in BALF, and increased circulating blood neutrophils. Intranasal instillation of MC tryptase increased the number of neutrophils recovered in BALF, and MC depletion with compound 48/80 impaired LPS-induced neutrophil migration. CONCLUSION: Our study provides, for the first time, evidence of a pivotal role for MCs and MC tryptase in neutrophil migration, lung inflammation and macrophage activation triggered by LPS, by a mechanism dependent on PAR2 activation.


Subject(s)
Mast Cells/immunology , Neutrophil Infiltration , Pneumonia/immunology , Receptor, PAR-2/immunology , Tryptases/immunology , Animals , Bronchoalveolar Lavage Fluid/immunology , Calcium Signaling , Chemokine CXCL1/immunology , Female , Lipopolysaccharides , Lung/immunology , Lung/pathology , Macrophage Activation , Mice , Mice, Inbred C57BL , Piperazines/pharmacology , Pneumonia/chemically induced , Pneumonia/pathology , RAW 264.7 Cells , Receptor, PAR-2/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...