Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 10(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36289905

ABSTRACT

Parkinson's disease (PD) is an aggressive and devastating age-related disorder. Although the causes are still unclear, several factors, including genetic and environmental, are involved. Except for symptomatic drugs, there are not, to date, any real cures for PD. For this purpose, it is necessary develop a model to better study this disease. Neuroblastoma cell line, SH-SY5Y, differentiated with retinoic acid represents a good in vitro model to explore PD, since it maintains growth cells to differentiated neurons. In the present study, SH-SY5Y cells were treated with 1-methyl-4-phenylpyridinium (MPP+), a neurotoxin that induces Parkinsonism, and the neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP), delivered by functionalized liposomes in a blood-brain barrier fluid dynamic model, were evaluated. We demonstrated PACAP neuroprotective effects when delivered by gH625-liposome on MPP+-damaged SH-SY5Y spheroids.

2.
Front Physiol ; 13: 932099, 2022.
Article in English | MEDLINE | ID: mdl-36060696

ABSTRACT

The blood-brain barrier (BBB) selectively protects the central nervous system (CNS) from external insults, but its function can represent a limit for the passage of therapeutic molecules. Numerous in vitro models of the BBB have been realized in order to study the passage of drugs for neurodegenerative diseases, but these in vitro models are not very representative of the physiological conditions because of a limited supply of oxygen and nutrients due to static conditions. To avoid this phenomenon, we used a millifluidic bioreactor model that ensures a circulation of the medium and, therefore, of the nutrients, thanks to the continuous laminar flow. This dynamic model consists of a double-culture chamber separated by a membrane on which brain endothelial cells are cultured in order to evaluate the passage of the drug. Furthermore, in the lower chamber, SH-SY5Y were seeded as 3D spheroids to evaluate the drug passage through these cells. As nanodelivery system, we used liposomes functionalized with viral fusion peptide to evaluate the passage of a neuroprotective agent, pituitary adenylate cyclase-activating polypeptide (PACAP), through the dynamic in vitro model of the BBB. We showed that our nanodelivery system, made of functionalized liposomes and loaded with specific molecules, efficiently crosses the in vitro fluid-dynamic model of the BBB. Our findings represent an important step for further experimental investigations on PACAP administration as a therapeutic agent by an enhanced drug delivery system. Our results can improve the diffusion of good practice in neuroscience laboratories, helping to spread the 3R rules.

3.
Gen Comp Endocrinol ; 298: 113579, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32777222

ABSTRACT

Spermatogenesis is an extraordinarily complex process, regulated by several factors, which leads to the differentiation of spermatogonia into spermatozoa. Among vertebrates, several reports have been focused on the lizard Podarcis sicula, a seasonal breeder and a good model for the study of reproductive processes. The goal of this review is to resume all the available data about systemic and above all local control factors involved in the control of P. sicula testicular activity. During the seasonal reproductive cycle, the variation of the expression levels of these factors determines significant variations that induce the activation or blocking of spermatogenesis. The data supplied in this review, in addition to analyze the current literature regarding the main actors of Podarcis sicula spermatogenesis, will hopefully provide a basic model that can be used for further studies on the intratesticular interaction between molecular factors that control spermatogenesis.


Subject(s)
Lizards/physiology , Spermatogenesis/physiology , Animals , Male , Models, Biological , Reproduction/physiology , Testis/metabolism
4.
Gen Comp Endocrinol ; 297: 113550, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32679158

ABSTRACT

The adrenal gland is an essential component of the body stress response; it is formed by two portions: a steroidogenic and a chromaffin tissue. Despite the anatomy of adrenal gland is different among classes of vertebrates, the hormones produced are almost the same. During stress, these hormones contribute to body homeostasis and maintenance of ion balance. The adrenal gland is very sensitive to toxic compounds, many of which behave like endocrine-disruptor chemicals (EDCs). They contribute to alter the endocrine system in wildlife and humans and are considered as possible responsible of the decline of several vertebrate ectotherms. Considering that EDCs regularly can be found in all environmental matrices, the aim of this review is to collect information about the impact of these chemical compounds on the adrenal gland of fishes, amphibians and reptiles. In particular, this review shows the different behavior of these "sentinel species" when they are exposed to stress condition. The data supplied in this review can help to further elucidate the role of EDCs and their harmful impact on the survival of these vertebrates.


Subject(s)
Adrenal Glands/physiology , Amphibians/physiology , Endocrine Disruptors/toxicity , Fishes/physiology , Reptiles/physiology , Adrenal Glands/anatomy & histology , Adrenal Glands/ultrastructure , Animals , Chromaffin Cells/drug effects , Chromaffin Cells/ultrastructure
5.
Chemosphere ; 258: 127239, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32535440

ABSTRACT

Alkylphenols (AP) are widespread environmental compounds belonging to the large family of substances known as Endocrine Disrupting Chemicals (EDCs). The present study was carried out to assess the effects of Octylphenol (OP) alone and in combination with Nonylphenol (NP) on the hypothalamus-pituitary-adrenal gland (HPA) axis of the lizard Podarcis sicula. Lizards are good bioindicators due to their features such as wide distribution, large population and good sensitivity to contaminants. Results obtained showed a time and dose-dependent stimulation of the HPA together with a high variation of both catecholamine plasma levels and greater vascularization and hypertrophy of steroidogenic cord of adrenal gland after both OP and OP + NP treatments. Interestingly, the OP + NP mixture treatment has provoked a state of stress of the adrenal gland which in fact appeared to be characterized by the presence of a marked macrophage infiltration which can be seen especially close to the connective capsule surrounding the gland. This macrophage infiltration could be an evidence of a particularly pronounced inflammatory state to indicate, probably, an animal's response to a non-physiological situation.


Subject(s)
Adrenal Glands/drug effects , Endocrine Disruptors/toxicity , Hypothalamo-Hypophyseal System/drug effects , Lizards , Phenols/toxicity , Pituitary-Adrenal System/drug effects , Adrenal Glands/immunology , Adrenal Glands/physiology , Animals , Hypothalamo-Hypophyseal System/immunology , Lizards/physiology , Pituitary-Adrenal System/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...